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PREFACE TO ORIGINAL EDITION.

The present book has for its object the presentation of the lectures which I delivered
as foreign lecturer at Columbia University in the spring of the present year under the
title: “The Present System of Theoretical Physics.” The points of view which influenced
me in the selection and treatment of the material are given at the beginning of the first
lecture. Essentially, they represent the extension of a theoretical physical scheme, the
fundamental elements of which I developed in an address at Leyden entitled: “The
Unity of the Physical Concept of the Universe.” Therefore I regard it as advantageous
to consider again some of the topics of that lecture. The presentation will not and can
not, of course, claim to cover exhaustively in all directions the principles of theoretical
physics.

The Author.

Berlin, 1909

TRANSLATOR’S PREFACE.

At the request of the Adams Fund Advisory Committee, and with the consent
of the author, the following translation of Professor Planck’s Columbia Lectures was
undertaken. It is hoped that the translation will be of service to many of those interested
in the development of theoretical physics who, in spite of the inevitable loss, prefer
a translated text in English to an original text in German. Since the time of the
publication of the original text, some of the subjects treated, particularly that of heat
radiation, have received much attention, with the result that some of the points of view
taken at that time have undergone considerable modifications. The author considers
it desirable, however, to have the translation conform to the original text, since the
nature and extent of these modifications can best be appreciated by reference to the
recent literature relating to the matters in question.

A. P. Wills.
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FIRST LECTURE.

Introduction: Reversibility and Irreversibility.

Colleagues, ladies and gentlemen: The cordial invitation, which the President of
Columbia University extended to me to deliver at this prominent center of American
science some lectures in the domain of theoretical physics, has inspired in me a sense
of the high honor and distinction thus conferred upon me and, in no less degree, a
consciousness of the special obligations which, through its acceptance, would be imposed
upon me. If I am to count upon meeting in some measure your just expectations, I
can succeed only through directing your attention to the branches of my science with
which I myself have been specially and deeply concerned, thus exposing myself to the
danger that my report in certain respects shall thereby have somewhat too subjective
a coloring.

From those points of view which appear to me the most striking, it is my desire to
depict for you in these lectures the present status of the system of theoretical physics.
I do not say: the present status of theoretical physics; for to cover this far broader
subject, even approximately, the number of lecture hours at my disposal would by no
means suffice. Time limitations forbid the extensive consideration of the details of this
great field of learning; but it will be quite possible to develop for you, in bold outline,
a representation of the system as a whole, that is, to give a sketch of the fundamental
laws which rule in the physics of today, of the most important hypotheses employed,
and of the great ideas which have recently forced themselves into the subject. I will
often gladly endeavor to go into details, but not in the sense of a thorough treatment of
the subject, and only with the object of making the general laws more clear, through
appropriate specially chosen examples. I shall select these examples from the most
varied branches of physics.

If we wish to obtain a correct understanding of the achievements of theoretical
physics, we must guard in equal measure against the mistake of overestimating these
achievements, and on the other hand, against the corresponding mistake of underesti-
mating them. That the second mistake is actually often made, is shown by the circum-
stance that quite recently voices have been loudly raised maintaining the bankruptcy
and, débâcle of the whole of natural science. But I think such assertions may easily
be refuted by reference to the simple fact that with each decade the number and the
significance of the means increase, whereby mankind learns directly through the aid of
theoretical physics to make nature useful for its own purposes. The technology of today
would be impossible without the aid of theoretical physics. The development of the
whole of electro-technics from galvanoplasty to wireless telegraphy is a striking proof of
this, not to mention aerial navigation. On the other hand, the mistake of overestimat-
ing the achievements of theoretical physics appears to me to be much more dangerous,
and this danger is particularly threatened by those who have penetrated comparatively
little into the heart of the subject. They maintain that some time, through a proper
improvement of our science, it will be possible, not only to represent completely through
physical formulae the inner constitution of the atoms, but also the laws of mental life.
I think that there is nothing in the world entitling us to the one or the other of these
expectations. On the other hand, I believe that there is much which directly opposes
them. Let us endeavor then to follow the middle course and not to deviate appreciably
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toward the one side or the other.
When we seek for a solid immovable foundation which is able to carry the whole

structure of theoretical physics, we meet with the questions: What lies at the bottom
of physics? What is the material with which it operates? Fortunately, there is a
complete answer to this question. The material with which theoretical physics operates
is measurements, and mathematics is the chief tool with which this material is worked.
All physical ideas depend upon measurements, more or less exactly carried out, and each
physical definition, each physical law, possesses a more definite significance the nearer
it can be brought into accord with the results of measurements. Now measurements are
made with the aid of the senses; before all with that of sight, with hearing and with
feeling. Thus far, one can say that the origin and the foundation of all physical research
are seated in our sense perceptions. Through sense perceptions only do we experience
anything of nature; they are the highest court of appeal in questions under dispute.
This view is completely confirmed by a glance at the historical development of physical
science. Physics grows upon the ground of sensations. The first physical ideas derived
were from the individual perceptions of man, and, accordingly, physics was subdivided
into: physics of the eye (optics), physics of the ear (acoustics), and physics of heat
sensation (theory of heat). It may well be said that so far as there was a domain of
sense, so far extended originally the domain of physics. Therefore it appears that in the
beginning the division of physics was based upon the peculiarities of man. It possessed,
in short, an anthropomorphic character. This appears also, in that physical research,
when not occupied with special sense perceptions, is concerned with practical life, and
particularly with the practical needs of men. Thus, the art of geodesy led to geometry,
the study of machinery to mechanics, and the conclusion lies near that physics in the
last analysis had only to do with the sense perceptions and needs of mankind.

In accordance with this view, the sense perceptions are the essential elements of
the world; to construct an object as opposed to sense perceptions is more or less an
arbitrary matter of will. In fact, when I speak of a tree, I really mean only a complex
of sense perceptions: I can see it, I can hear the rustling of its branches, I can smell its
fragrance, I experience pain if I knock my head against it, but disregarding all of these
sensations, there remains nothing to be made the object of a measurement, wherewith,
therefore, natural science can occupy itself. This is certainly true. In accordance with
this view, the problem of physics consists only in the relating of sense perceptions, in
accordance with experience, to fixed laws; or, as one may express it, in the greatest
possible economic accommodation of our ideas to our sensations, an operation which
we undertake solely because it is of use to us in the general battle of existence.

All this appears extraordinarily simple and clear and, in accordance with it, the fact
may readily be explained that this positivist view is quite widely spread in scientific
circles today. It permits, so far as it is limited to the standpoint here depicted (not al-
ways done consistently by the exponents of positivism), no hypothesis, no metaphysics;
all is clear and plain. I will go still further; this conception never leads to an actual con-
tradiction. I may even say, it can lead to no contradiction. But, ladies and gentlemen,
this view has never contributed to any advance in physics. If physics is to advance, in
a certain sense its problem must be stated in quite the inverse way, on account of the
fact that this conception is inadequate and at bottom possesses only a formal meaning.

The proof of the correctness of this assertion is to be found directly from a consid-
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eration of the process of development which theoretical physics has actually undergone,
and which one certainly cannot fail to designate as essential. Let us compare the system
of physics of today with the earlier and more primitive system which I have depicted
above. At the first glance we encounter the most striking difference of all, that in the
present system, as well in the division of the various physical domains as in all physical
definitions, the historical element plays a much smaller rôle than in the earlier system.
While originally, as I have shown above, the fundamental ideas of physics were taken
from the specific sense perceptions of man, the latter are today in large measure ex-
cluded from physical acoustics, optics, and the theory of heat. The physical definitions
of tone, color, and of temperature are today in no wise derived from perception through
the corresponding senses; but tone and color are defined through a vibration number
or wave length, and the temperature through the volume change of a thermometric
substance, or through a temperature scale based on the second law of thermodynamics;
but heat sensation is in no wise mentioned in connection with the temperature. With
the idea of force it has not been otherwise. Without doubt, the word force originally
meant bodily force, corresponding to the circumstance that the oldest tools, the ax,
hammer, and mallet, were swung by man’s hands, and that the first machines, the
lever, roller, and screw, were operated by men or animals. This shows that the idea of
force was originally derived from the sense of force, or muscular sense, and was, there-
fore, a specific sense perception. Consequently, I regard it today as quite essential in a
lecture on mechanics to refer, at any rate in the introduction, to the original meaning
of the force idea. But in the modern exact definition of force the specific notion of
sense perception is eliminated, as in the case of color sense, and we may say, quite in
general, that in modern theoretical physics the specific sense perceptions play a much
smaller rôle in all physical definitions than formerly. In fact, the crowding into the
background of the specific sense elements goes so far that the branches of physics which
were originally completely and uniquely characterized by an arrangement in accordance
with definite sense perceptions have fallen apart, in consequence of the loosening of
the bonds between different and widely separated branches, on account of the general
advance towards simplification and coordination. The best example of this is furnished
by the theory of heat. Earlier, heat formed a separate and unified domain of physics,
characterized through the perceptions of heat sensation. Today one finds in well nigh
all physics textbooks dealing with heat a whole domain, that of radiant heat, separated
and treated under optics. The significance of heat perception no longer suffices to bring
together the heterogeneous parts.

In short, we may say that the characteristic feature of the entire previous devel-
opment of theoretical physics is a definite elimination from all physical ideas of the
anthropomorphic elements, particularly those of specific sense perceptions. On the
other hand, as we have seen above, if one reflects that the perceptions form the point
of departure in all physical research, and that it is impossible to contemplate their
absolute exclusion, because we cannot close the source of all our knowledge, then this
conscious departure from the original conceptions must always appear astonishing or
even paradoxical. There is scarcely a fact in the history of physics which today stands
out so clearly as this. Now, what are the great advantages to be gained through such a
real obliteration of personality? What is the result for the sake of whose achievement
are sacrificed the directness and succinctness such as only the special sense perceptions
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vouchsafe to physical ideas?
The result is nothing more than the attainment of unity and compactness in our

system of theoretical physics, and, in fact, the unity of the system, not only in relation
to all of its details, but also in relation to physicists of all places, all times, all peoples,
all cultures. Certainly, the system of theoretical physics should be adequate, not only
for the inhabitants of this earth, but also for the inhabitants of other heavenly bodies.
Whether the inhabitants of Mars, in case such actually exist, have eyes and ears like our
own, we do not know,—it is quite improbable; but that they, in so far as they possess
the necessary intelligence, recognize the law of gravitation and the principle of energy,
most physicists would hold as self evident: and anyone to whom this is not evident
had better not appeal to the physicists, for it will always remain for him an unsolvable
riddle that the same physics is made in the United States as in Germany.

To sum up, we may say that the characteristic feature of the actual development of
the system of theoretical physics is an ever extending emancipation from the anthro-
pomorphic elements, which has for its object the most complete separation possible of
the system of physics and the individual personality of the physicist. One may call this
the objectiveness of the system of physics. In order to exclude the possibility of any
misunderstanding, I wish to emphasize particularly that we have here to do, not with an
absolute separation of physics from the physicist—for a physics without the physicist is
unthinkable,—but with the elimination of the individuality of the particular physicist
and therefore with the production of a common system of physics for all physicists.

Now, how does this principle agree with the positivist conceptions mentioned above?
Separation of the system of physics from the individual personality of the physicist?
Opposed to this principle, in accordance with those conceptions, each particular physi-
cist must have his special system of physics, in case that complete elimination of all
metaphysical elements is effected; for physics occupies itself only with the facts dis-
covered through perceptions, and only the individual perceptions are directly involved.
That other living beings have sensations is, strictly speaking, but a very probable,
though arbitrary, conclusion from analogy. The system of physics is therefore primarily
an individual matter and, if two physicists accept the same system, it is a very happy
circumstance in connection with their personal relationship, but it is not essentially nec-
essary. One can regard this view-point however he will; in physics it is certainly quite
fruitless, and this is all that I care to maintain here. Certainly, I might add, each great
physical idea means a further advance toward the emancipation from anthropomorphic
ideas. This was true in the passage from the Ptolemaic to the Copernican cosmical
system, just as it is true at the present time for the apparently impending passage from
the so-called classical mechanics of mass points to the general dynamics originating
in the principle of relativity. In accordance with this, man and the earth upon which
he dwells are removed from the centre of the world. It may be predicted that in this
century the idea of time will be divested of the absolute character with which men have
been accustomed to endow it (cf. the final lecture). Certainly, the sacrifices demanded
by every such revolution in the intuitive point of view are enormous; consequently, the
resistance against such a change is very great. But the development of science is not
to be permanently halted thereby; on the contrary, its strongest impetus is experienced
through precisely those forces which attain success in the struggle against the old points
of view, and to this extent such a struggle is constantly necessary and useful.
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Now, how far have we advanced today toward the unification of our system of
physics? The numerous independent domains of the earlier physics now appear reduced
to two; mechanics and electrodynamics, or, as one may say: the physics of material
bodies and the physics of the ether. The former comprehends acoustics, phenomena in
material bodies, and chemical phenomena; the latter, magnetism, optics, and radiant
heat. But is this division a fundamental one? Will it prove final? This is a question
of great consequence for the future development of physics. For myself, I believe it
must be answered in the negative, and upon the following grounds: mechanics and
electrodynamics cannot be permanently sharply differentiated from each other. Does
the process of light emission, for example, belong to mechanics or to electrodynamics?
To which domain shall be assigned the laws of motion of electrons? At first glance, one
may perhaps say: to electrodynamics, since with the electrons ponderable matter does
not play any rôle. But let one direct his attention to the motion of free electrons in
metals. There he will find, in the study of the classical researches of H. A. Lorentz, for
example, that the laws obeyed by the electrons belong rather to the kinetic theory of
gases than to electrodynamics. In general, it appears to me that the original differences
between processes in the ether and processes in material bodies are to be considered
as disappearing. Electrodynamics and mechanics are not so remarkably far apart, as
is considered to be the case by many people, who already speak of a conflict between
the mechanical and the electrodynamic views of the world. Mechanics requires for its
foundation essentially nothing more than the ideas of space, of time, and of that which
is moving, whether one considers this as a substance or a state. The same ideas are
also involved in electrodynamics. A sufficiently generalized conception of mechanics
can therefore also well include electrodynamics, and, in fact, there are many indications
pointing toward the ultimate amalgamation of these two subjects, the domains of which
already overlap in some measure.

If, therefore, the gulf between ether and matter be once bridged, what is the point
of view which in the last analysis will best serve in the subdivision of the system of
physics? The answer to this question will characterize the whole nature of the further
development of our science. It is, therefore, the most important among all those which
I propose to treat today. But for the purposes of a closer investigation it is necessary
that we go somewhat more deeply into the peculiarities of physical principles.

We shall best begin at that point from which the first step was made toward the
actual realization of the unified system of physics previously postulated by the philoso-
phers only; at the principle of conservation of energy. For the idea of energy is the
only one besides those of space and time which is common to all the various domains
of physics. In accordance with what I have stated above, it will be apparent and quite
self evident to you that the principle of energy, before its general formularization by
Mayer, Joule, and Helmholz, also bore an anthropomorphic character. The roots of
this principle lay already in the recognition of the fact that no one is able to obtain
useful work from nothing; and this recognition had originated essentially in the expe-
riences which were gathered in attempts at the solution of a technical problem: the
discovery of perpetual motion. To this extent, perpetual motion has come to have
for physics a far reaching significance, similar to that of alchemy for the chemist, al-
though it was not the positive, but rather the negative results of these experiments,
through which science was advanced. Today we speak of the principle of energy quite
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without reference to the technical viewpoint or to that of man. We say that the total
amount of energy of an isolated system of bodies is a quantity whose amount can be
neither increased nor diminished through any kind of process within the system, and
we no longer consider the accuracy with which this law holds as dependent upon the
refinement of the methods, which we at present possess, of testing experimentally the
question of the realization of perpetual motion. In this, strictly speaking, unprovable
generalization, impressed upon us with elemental force, lies the emancipation from the
anthropomorphic elements mentioned above.

While the principle of energy stands before us as a complete independent structure,
freed from and independent of the accidents appertaining to its historical development,
this is by no means true in equal measure in the case of that principle which R. Clausius
introduced into physics; namely, the second law of thermodynamics. This law plays a
very peculiar rôle in the development of physical science, to the extent that one is
not able to assert today that for it a generally recognized, and therefore objective
formularization, has been found. In our present consideration it is therefore a matter
of particular interest to examine more closely its significance.

In contrast to the first law of thermodynamics, or the energy principle, the second
law may be characterized as follows. While the first law permits in all processes of nature
neither the creation nor destruction of energy, but permits of transformations only, the
second law goes still further into the limitation of the possible processes of nature, in
that it permits, not all kinds of transformations, but only certain types, subject to
certain conditions. The second law occupies itself, therefore, with the question of the
kind and, in particular, with the direction of any natural process.

At this point a mistake has frequently been made, which has hindered in a very
pronounced manner the advance of science up to the present day. In the endeavor to
give to the second law of thermodynamics the most general character possible, it has
been proclaimed by followers of W. Ostwald as the second law of energetics, and the
attempt made so to formulate it that it shall determine quite generally the direction of
every process occurring in nature. Some weeks ago I read in a public academic address
of an esteemed colleague the statement that the import of the second law consists in
this, that a stone falls downwards, that water flows not up hill, but down, that electricity
flows from a higher to a lower potential, and so on. This is a mistake which at present
is altogether too prevalent not to warrant mention here.

The truth is, these statements are false. A stone can just as well rise in the air as fall
downwards; water can likewise flow upwards, as, for example, in a spring; electricity can
flow very well from a lower to a higher potential, as in the case of oscillating discharge
of a condenser. The statements are obviously quite correct, if one applies them to a
stone originally at rest, to water at rest, to electricity at rest; but then they follow
immediately from the energy principle, and one does not need to add a special second
law. For, in accordance with the energy principle, the kinetic energy of the stone or
of the water can only originate at the cost of gravitational energy, i. e., the center of
mass must descend. If, therefore, motion is to take place at all, it is necessary that
the gravitational energy shall decrease. That is, the center of mass must descend. In
like manner, an electric current between two condenser plates can originate only at the
cost of electrical energy already present; the electricity must therefore pass to a lower
potential. If, however, motion and current be already present, then one is not able to
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say, a priori, anything in regard to the direction of the change; it can take place just as
well in one direction as the other. Therefore, there is no new insight into nature to be
obtained from this point of view.

Upon an equally inadequate basis rests another conception of the second law, which
I shall now mention. In considering the circumstance that mechanical work may very
easily be transformed into heat, as by friction, while on the other hand heat can only
with difficulty be transformed into work, the attempt has been made so to characterize
the second law, that in nature the transformation of work into heat can take place
completely, while that of heat into work, on the other hand, only incompletely and in
such manner that every time a quantity of heat is transformed into work another corre-
sponding quantity of energy must necessarily undergo at the same time a compensating
transformation, as, e. g., the passage of heat from a higher to a lower temperature. This
assertion is in certain special cases correct, but does not strike in general at the true
import of the matter, as I shall show by a simple example.

One of the most important laws of thermodynamics is, that the total energy of an
ideal gas depends only upon its temperature, and not upon its volume. If an ideal
gas be allowed to expand while doing work, and if the cooling of the gas be prevented
through the simultaneous addition of heat from a heat reservoir at higher temperature,
the gas remains unchanged in temperature and energy content, and one may say that
the heat furnished by the heat reservoir is completely transformed into work without
exchange of energy. Not the least objection can be urged against this assertion. The law
of incomplete transformation of heat into work is retained only through the adoption
of a different point of view, but which has nothing to do with the status of the physical
facts and only modifies the way of looking at the matter, and therefore can neither be
supported nor contradicted through facts; namely, through the introduction ad hoc of
new particular kinds of energy, in that one divides the energy of the gas into numerous
parts which individually can depend upon the volume. But it is a priori evident that
one can never derive from so artificial a definition a new physical law, and it is with
such that we have to do when we pass from the first law, the principle of conservation
of energy, to the second law.

I desire now to introduce such a new physical law: “It is not possible to construct a
periodically functioning motor which in principle does not involve more than the raising
of a load and the cooling of a heat reservoir.” It is to be understood, that in one cycle
of the motor quite arbitrary complicated processes may take place, but that after the
completion of one cycle there shall remain no other changes in the surroundings than
that the heat reservoir is cooled and that the load is raised a corresponding distance,
which may be calculated from the first law. Such a motor could of course be used at the
same time as a refrigerating machine also, without any further expenditure of energy
and materials. Such a motor would moreover be the most efficient in the world, since
it would involve no cost to run it; for the earth, the atmosphere, or the ocean could
be utilized as the heat reservoir. We shall call this, in accordance with the proposal of
W. Ostwald, perpetual motion of the second kind. Whether in nature such a motion
is actually possible cannot be inferred from the energy principle, and may only be
determined by special experiments.

Just as the impossibility of perpetual motion of the first kind leads to the principle
of the conservation of energy, the quite independent principle of the impossibility of
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perpetual motion of the second kind leads to the second law of thermodynamics, and,
if we assume this impossibility as proven experimentally, the general law follows imme-
diately: there are processes in nature which in no possible way can be made completely
reversible. For consider, e. g., a frictional process through which mechanical work is
transformed into heat with the aid of suitable apparatus, if it were actually possible to
make in some way such complicated apparatus completely reversible, so that everywhere
in nature exactly the same conditions be reestablished as existed at the beginning of
the frictional process, then the apparatus considered would be nothing more than the
motor described above, furnishing a perpetual motion of the second kind. This appears
evident immediately, if one clearly perceives what the apparatus would accomplish:
transformation of heat into work without any further outstanding change.

We call such a process, which in no wise can be made completely reversible, an
irreversible process, and all other processes reversible processes; and thus we strike the
kernel of the second law of thermodynamics when we say that irreversible processes
occur in nature. In accordance with this, the changes in nature have a unidirectional
tendency. With each irreversible process the world takes a step forward, the traces of
which under no circumstances can be completely obliterated. Besides friction, exam-
ples of irreversible processes are: heat conduction, diffusion, conduction of electricity in
conductors of finite resistance, emission of light and heat radiation, disintegration of the
atom in radioactive substances, and so on. On the other hand, examples of reversible
processes are: motion of the planets, free fall in empty space, the undamped motion of
a pendulum, the frictionless flow of liquids, the propagation of light and sound waves
without absorption and refraction, undamped electrical vibrations, and so on. For all
these processes are already periodic or may be made completely reversible through suit-
able contrivances, so that there remains no outstanding change in nature; for example,
the free fall of a body whereby the acquired velocity is utilized to raise the body again
to its original height; a light or sound wave which is allowed in a suitable manner to be
totally reflected from a perfect mirror.

What now are the general properties and criteria of irreversible processes, and what
is the general quantitative measure of irreversibility? This question has been examined
and answered in the most widely different ways, and it is evident here again how difficult
it is to reach a correct formularization of a problem. Just as originally we came upon the
trail of the energy principle through the technical problem of perpetual motion, so again
a technical problem, namely, that of the steam engine, led to the differentiation between
reversible and irreversible processes. Long ago Sadi Carnot recognized, although he
utilized an incorrect conception of the nature of heat, that irreversible processes are
less economical than reversible, or that in an irreversible process a certain opportunity
to derive mechanical work from heat is lost. What then could have been simpler than
the thought of making, quite in general, the measure of the irreversibility of a process the
quantity of mechanical work which is unavoidably lost in the process. For a reversible
process then, the unavoidably lost work is naturally to be set equal to zero. This view,
in accordance with which the import of the second law consists in a dissipation of useful
energy, has in fact, in certain special cases, e. g., in isothermal processes, proved itself
useful. It has persisted, therefore, in certain of its aspects up to the present day; but
for the general case, however, it has shown itself as fruitless and, in fact, misleading.
The reason for this lies in the fact that the question concerning the lost work in a given
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irreversible process is by no means to be answered in a determinate manner, so long as
nothing further is specified with regard to the source of energy from which the work
considered shall be obtained.

An example will make this clear. Heat conduction is an irreversible process, or
as Clausius expresses it: Heat cannot without compensation pass from a colder to a
warmer body. What now is the work which in accordance with definition is lost when
the quantity of heat Q passes through direct conduction from a warmer body at the
temperature T1 to a colder body, at the temperature T2? In order to answer this
question, we make use of the heat transfer involved in carrying out a reversible Carnot
cyclical process between the two bodies employed as heat reservoirs. In this process a
certain amount of work would be obtained, and it is just the amount sought, since it is
that which would be lost in the direct passage by conduction; but this has no definite
value so long as we do not know whence the work originates, whether, e. g., in the
warmer body or in the colder body, or from somewhere else. Let one reflect that the
heat given up by the warmer body in the reversible process is certainly not equal to
the heat absorbed by the colder body, because a certain amount of heat is transformed
into work, and that we can identify, with exactly the same right, the quantity of heat Q
transferred by the direct process of conduction with that which in the cyclical process
is given up by the warmer body, or with that absorbed by the colder body. As one
does the former or the latter, he accordingly obtains for the quantity of lost work in
the process of conduction:

Q · T1 − T2

T1

or Q · T1 − T2

T2

.

We see, therefore, that the proposed method of expressing mathematically the irre-
versibility of a process does not in general effect its object, and at the same time we
recognize the peculiar reason which prevents its doing so. The statement of the question
is too anthropomorphic. It is primarily too much concerned with the needs of mankind,
in that it refers directly to the acquirement of useful work. If one require from nature
a determinate answer, he must take a more general point of view, more disinterested,
less economic. We shall now seek to do this.

Let us consider any typical process occurring in nature. This will carry all bodies
concerned in it from a determinate initial state, which I designate as state A, into
a determinate final state B. The process is either reversible or irreversible. A third
possibility is excluded. But whether it is reversible or irreversible depends solely upon
the nature of the two states A and B, and not at all upon the way in which the process
has been carried out; for we are only concerned with the answer to the question as
to whether or not, when the state B is once reached, a complete return to A in any
conceivable manner may be accomplished. If now, the complete return from B to A is
not possible, and the process therefore irreversible, it is obvious that the state B may
be distinguished in nature through a certain property from state A. Several years ago
I ventured to express this as follows: that nature possesses a greater “preference” for
state B than for state A. In accordance with this mode of expression, all those processes
of nature are impossible for whose final state nature possesses a smaller preference than
for the original state. Reversible processes constitute a limiting case; for such, nature
possesses an equal preference for the initial and for the final state, and the passage
between them takes place as well in one direction as the other.
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We have now to seek a physical quantity whose magnitude shall serve as a general
measure of the preference of nature for a given state. This quantity must be one which
is directly determined by the state of the system considered, without reference to the
previous history of the system, as is the case with the energy, with the volume, and
with other properties of the system. It should possess the peculiarity of increasing in
all irreversible processes and of remaining unchanged in all reversible processes, and the
amount of change which it experiences in a process would furnish a general measure for
the irreversibility of the process.

R. Clausius actually found this quantity and called it “entropy.” Every system of
bodies possesses in each of its states a definite entropy, and this entropy expresses the
preference of nature for the state in question. It can, in all the processes which take
place within the system, only increase and never decrease. If it be desired to consider a
process in which external actions upon the system are present, it is necessary to consider
those bodies in which these actions originate as constituting part of the system; then
the law as stated in the above form is valid. In accordance with it, the entropy of a
system of bodies is simply equal to the sum of the entropies of the individual bodies,
and the entropy of a single body is, in accordance with Clausius, found by the aid of
a certain reversible process. Conduction of heat to a body increases its entropy, and,
in fact, by an amount equal to the ratio of the quantity of heat given the body to its
temperature. Simple compression, on the other hand, does not change the entropy.

Returning to the example mentioned above, in which the quantity of heat Q is
conducted from a warmer body at the temperature T1 to a colder body at the temper-
ature T2, in accordance with what precedes, the entropy of the warmer body decreases
in this process, while, on the other hand, that of the colder increases, and the sum of
both changes, that is, the change of the total entropy of both bodies, is:

−Q
T1

+
Q

T2

> 0.

This positive quantity furnishes, in a manner free from all arbitrary assumptions,
the measure of the irreversibility of the process of heat conduction. Such examples may
be cited indefinitely. Every chemical process furnishes an increase of entropy.

We shall here consider only the most general case treated by Clausius: an arbi-
trary reversible or irreversible cyclical process, carried out with any physico-chemical
arrangement, utilizing an arbitrary number of heat reservoirs. Since the arrangement
at the conclusion of the cyclical process is the same as that at the beginning, the final
state of the process is to be distinguished from the initial state solely through the dif-
ferent heat content of the heat reservoirs, and in that a certain amount of mechanical
work has been furnished or consumed. Let Q be the heat given up in the course of the
process by a heat reservoir at the temperature T , and let A be the total work yielded
(consisting, e. g., in the raising of weights); then, in accordance with the first law of
thermodynamics: ∑

Q = A.

In accordance with the second law, the sum of the changes in entropy of all the heat
reservoirs is positive, or zero. It follows, therefore, since the entropy of a reservoir is
decreased by the amount Q/T through the loss of heat Q that:∑Q

T
5 0.
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This is the well-known inequality of Clausius.
In an isothermal cyclical process, T is the same for all reservoirs. Therefore:∑

Q 5 0, hence: A 5 0.

That is: in an isothermal cyclical process, heat is produced and work is consumed. In
the limiting case, a reversible isothermal cyclical process, the sign of equality holds,
and therefore the work consumed is zero, and also the heat produced. This law plays a
leading rôle in the application of thermodynamics to physical chemistry.

The second law of thermodynamics including all of its consequences has thus led to
the principle of increase of entropy. You will now readily understand, having regard to
the questions mentioned above, why I express it as my opinion that in the theoretical
physics of the future the first and most important differentiation of all physical processes
will be into reversible and irreversible processes.

In fact, all reversible processes, whether they take place in material bodies, in the
ether, or in both together, show a much greater similarity among themselves than to
any irreversible process. In the differential equations of reversible processes the time
differential enters only as an even power, corresponding to the circumstance that the
sign of time can be reversed. This holds equally well for vibrations of the pendulum,
electrical vibrations, acoustic and optical waves, and for motions of mass points or of
electrons, if we only exclude every kind of damping. But to such processes also belong
those infinitely slow processes of thermodynamics which consist of states of equilibrium
in which the time in general plays no rôle, or, as one may also say, occurs with the zero
power, which is to be reckoned as an even power. As Helmholtz has pointed out, all these
reversible processes have the common property that they may be completely represented
by the principle of least action, which gives a definite answer to all questions concerning
any such measurable process, and, to this extent, the theory of reversible processes
may be regarded as completely established. Reversible processes have, however, the
disadvantage that singly and collectively they are only ideal: in actual nature there is
no such thing as a reversible process. Every natural process involves in greater or less
degree friction or conduction of heat. But in the domain of irreversible processes the
principle of least action is no longer sufficient; for the principle of increase of entropy
brings into the system of physics a wholly new element, foreign to the action principle,
and which demands special mathematical treatment. The unidirectional course of a
process in the attainment of a fixed final state is related to it.

I hope the foregoing considerations have sufficed to make clear to you that the dis-
tinction between reversible and irreversible processes is much broader than that between
mechanical and electrical processes and that, therefore, this difference, with better right
than any other, may be taken advantage of in classifying all physical processes, and that
it may eventually play in the theoretical physics of the future the principal rôle.

However, the classification mentioned is in need of quite an essential improvement,
for it cannot be denied that in the form set forth, the system of physics is still suffering
from a strong dose of anthropomorphism. In the definition of irreversibility, as well
as in that of entropy, reference is made to the possibility of carrying out in nature
certain changes, and this means, fundamentally, nothing more than that the division
of physical processes is made dependent upon the manipulative skill of man in the
art of experimentation, which certainly does not always remain at a fixed stage, but
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is continually being more and more perfected. If, therefore, the distinction between
reversible and irreversible processes is actually to have a lasting significance for all
times, it must be essentially broadened and made independent of any reference to the
capacities of mankind. How this may happen, I desire to state one week from tomorrow.
The lecture of tomorrow will be devoted to the problem of bringing before you some of
the most important of the great number of practical consequences following from the
entropy principle.
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SECOND LECTURE.

Thermodynamic States of Equilibrium in Dilute Solutions.

In the lecture of yesterday I sought to make clear the fact that the essential, and
therefore the final division of all processes occurring in nature, is into reversible and
irreversible processes, and the characteristic difference between these two kinds of pro-
cesses, as I have further separated them, is that in irreversible processes the entropy
increases, while in all reversible processes it remains constant. Today I am constrained
to speak of some of the consequences of this law which will illustrate its rich fruitfulness.
They have to do with the question of the laws of thermodynamic equilibrium. Since in
nature the entropy can only increase, it follows that the state of a physical configura-
tion which is completely isolated, and in which the entropy of the system possesses an
absolute maximum, is necessarily a state of stable equilibrium, since for it no further
change is possible. How deeply this law underlies all physical and chemical relations
has been shown by no one better and more completely than by John Willard Gibbs,
whose name, not only in America, but in the whole world will be counted among those
of the most famous theoretical physicists of all times; to whom, to my sorrow, it is
no longer possible for me to tender personally my respects. It would be gratuitous for
me, here in the land of his activity, to expatiate fully on the progress of his ideas, but
you will perhaps permit me to speak in the lecture of today of some of the important
applications in which thermodynamic research, based on Gibbs works, can be advanced
beyond his results.

These applications refer to the theory of dilute solutions, and we shall occupy our-
selves today with these, while I show you by a definite example what fruitfulness is
inherent in thermodynamic theory. I shall first characterize the problem quite gener-
ally. It has to do with the state of equilibrium of a material system of any number of
arbitrary constituents in an arbitrary number of phases, at a given temperature T and
given pressure p. If the system is completely isolated, and therefore guarded against
all external thermal and mechanical actions, then in any ensuing change the entropy of
the system will increase:

dS > 0.

But if, as we assume, the system stands in such relation to its surroundings that in
any change which the system undergoes the temperature T and the pressure p are
maintained constant, as, for instance, through its introduction into a calorimeter of great
heat capacity and through loading with a piston of fixed weight, the inequality would
suffer a change thereby. We must then take account of the fact that the surrounding
bodies also, e. g., the calorimetric liquid, will be involved in the change. If we denote
the entropy of the surrounding bodies by S0, then the following more general equation
holds:

dS + dS0 > 0.

In this equation

dS0 = −Q
T
,

if Q denote the heat which is given up in the change by the surroundings to the system.
On the other hand, if U denote the energy, V the volume of the system, then, in

20



accordance with the first law of thermodynamics,

Q = dU + pdV.

Consequently, through substitution:

dS − dU + pdV

T
> 0

or, since p and T are constant:

d

(
S − U + pV

T

)
> 0.

If, therefore, we put:

S − U + pV

T
= Φ, (1)

then
dΦ > 0,

and we have the general law, that in every isothermal-isobaric (T = const., p = const.)
change of state of a physical system the quantity Φ increases. The absolutely stable
state of equilibrium of the system is therefore characterized through the maximum of Φ:

δΦ = 0. (2)

If the system consist of numerous phases, then, because Φ, in accordance with (1), is
linear and homogeneous in S, U and V , the quantity Φ referring to the whole system is
the sum of the quantities Φ referring to the individual phases. If the expression for Φ
is known as a function of the independent variables for each phase of the system, then,
from equation (2), all questions concerning the conditions of stable equilibrium may be
answered. Now, within limits, this is the case for dilute solutions. By “solution” in
thermodynamics is meant each homogeneous phase, in whatever state of aggregation,
which is composed of a series of different molecular complexes, each of which is repre-
sented by a definite molecular number. If the molecular number of a given complex is
great with reference to all the remaining complexes, then the solution is called dilute,
and the molecular complex in question is called the solvent; the remaining complexes
are called the dissolved substances.

Let us now consider a dilute solution whose state is determined by the pressure p,
the temperature T , and the molecular numbers n0, n1, n2, n3, · · · , wherein the subscript
zero refers to the solvent. Then the numbers n1, n2, n3, · · · are all small with respect
to n0, and on this account the volume V and the energy U are linear functions of the
molecular numbers:

V = n0v0 + n1v1 + n2v2 + · · · ,
U = n0u0 + n1u1 + n2u2 + · · · ,

wherein the v’s and u’s depend upon p and T only.
From the general equation of entropy:

dS =
dU + pdV

T
,
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in which the differentials depend only upon changes in p and T , and not in the molecular
numbers, there results therefore:

dS = n0
du0 + pdv0

T
+ n1

du1 + pdv1

T
+ · · · ,

and from this it follows that the expressions multiplied by n0, n1 · · · , dependent upon
p and T only, are complete differentials. We may therefore write:

du0 + pdv0

T
= ds0,

du1 + pdv1

T
= ds1, · · · (3)

and by integration obtain:

S = n0s0 + n1s1 + n2s2 + · · ·+ C.

The constant C of integration does not depend upon p and T , but may depend upon
the molecular numbers n0, n1, n2, · · · . In order to express this dependence generally,
it suffices to know it for a special case, for fixed values of p and T . Now every solution
passes, through appropriate increase of temperature and decrease of pressure, into the
state of a mixture of ideal gases, and for this case the entropy is fully known, the
integration constant being, in accordance with Gibbs:

C = −R(n0 log c0 + n1 log c1 + · · · ),

wherein R denotes the absolute gas constant and c0, c1, c2, · · · denote the “molecular
concentrations”:

c0 =
n0

n0 + n1 + n2 + · · ·
, c1 =

n1

n0 + n1 + n2 + · · ·
, · · · .

Consequently, quite in general, the entropy of a dilute solution is:

S = n0(s0 −R log c0) + n1(s1 −R log c1) + · · · ,

and, finally, from this it follows by substitution in equation (1) that:

Φ = n0(ϕ0 −R log c0) + n1(ϕ1 −R log c1) + · · · , (4)

if we put for brevity:

ϕ0 = s0 −
u0 + pv0

T
, ϕ1 = s1 −

u1 + pv1

T
, · · · (5)

all of which quantities depend only upon p and T .
With the aid of the expression obtained for Φ we are enabled through equation (2)

to answer the question with regard to thermodynamic equilibrium. We shall first find
the general law of equilibrium and then apply it to a series of particularly interesting
special cases.

Every material system consisting of an arbitrary number of homogeneous phases
may be represented symbolically in the following way:

n0m0, n1m1, · · · | n0
′m0

′, n1
′m1

′, · · · | n0
′′m0

′′, n1
′′m1

′′, · · · | · · · .
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Here the molecular numbers are denoted by n, the molecular weights by m, and the
individual phases are separated from one another by vertical lines. We shall now suppose
that each phase represents a dilute solution. This will be the case when each phase
contains only a single molecular complex and therefore represents an absolutely pure
substance; for then the concentrations of all the dissolved substances will be zero.

If now an isobaric-isothermal change in the system of such kind is possible that the
molecular numbers

n0, n1, n2, · · · , n0
′, n1

′, n2
′, · · · , n0

′′, n1
′′, n2

′′, · · ·

change simultaneously by the amounts

δn0, δn1, δn2, · · · , δn0
′, δn1

′, δn2
′, · · · , δn0

′′, δn1
′′, δn2

′′, · · ·

then, in accordance with equation (2), equilibrium obtains with respect to the occur-
rence of this change if, when T and p are held constant, the function

Φ + Φ′ + Φ′′ + · · ·

is a maximum, or, in accordance with equation (4):∑
(ϕ0 −R log c0)δn0 + (ϕ1 −R log c1)δn1 + · · · = 0

(the summation
∑

being extended over all phases of the system). Since we are only
concerned in this equation with the ratios of the δn’s, we put

δn0 : δn1 : · · · : δn0
′ : δn1

′ : · · · : δn0
′′ : δn1

′′ : · · ·
= ν0 : ν1 : · · · : ν0

′ : ν1
′ : · · · : ν0

′′ : ν1
′′ : · · · ,

wherein we are to understand by the simultaneously changing ν’s, in the variation
considered, simple integer positive or negative numbers, according as the molecular
complex under consideration is formed or disappears in the change. Then the condition
for equilibrium is:∑

ν0 log c0 + ν1 log c1 + · · · = 1

R

∑
ν0ϕ0 + ν1ϕ1 + · · · = logK. (6)

K and the quantities ϕ0, ϕ1, ϕ2, · · · depend only upon p and T , and this dependence
is to be found from the equations:

∂ logK

∂p
=

1

R

∑
ν0
∂ϕ0

∂p
+ ν1

∂ϕ1

∂p
+ · · · ,

∂ logK

∂T
=

1

R

∑
ν0
∂ϕ0

∂T
+ ν1

∂ϕ1

∂T
+ · · · .

Now, in accordance with (5), for any infinitely small change of p and T :

dϕ0 = ds0 −
du0 + pdv0 + v0dp

T
+
u0 + pv0

T 2
· dT,
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and consequently, from (3):

dϕ0 =
u0 + pv0

T 2
dT − v0dp

T
,

and hence:
∂ϕ0

∂p
= −v0

T
,

∂ϕ0

∂T
=
u0 + pv0

T 2
.

Similar equations hold for the other ϕ’s, and therefore we get:

∂ logK

∂p
= − 1

RT

∑
ν0v0 + ν1v1 + · · · ,

∂ logK

∂T
= − 1

RT 2

∑
ν0u0 + ν2u2 + · · ·+ p(ν0v0 + ν1v1 + · · · )

or, more briefly:
∂ logK

∂p
= − 1

RT
·∆V, ∂ logK

∂T
=

∆Q

RT 2
, (7)

if ∆V denote the change in the total volume of the system and ∆Q the heat which is
communicated to it from outside, during the isobaric isothermal change considered. We
shall now investigate the import of these relations in a series of important applications.

I. Electrolytic Dissociation of Water.

The system consists of a single phase:

n0H2O, n1

+

H, n2

−
HO.

The transformation under consideration

ν0 : ν1 : ν2 = δn0 : δn1 : δn2

consists in the dissociation of a molecule H2O into a molecule
+

H and a molecule
−
HO,

therefore:
ν0 = −1, ν1 = 1, ν2 = 1.

Hence, in accordance with (6), for equilibrium:

− log c0 + log c1 + log c2 = logK,

or, since c1 = c2 and c0 = 1, approximately:

2 log c1 = logK.

The dependence of the concentration c1 upon the temperature now follows from (7):

2
∂ log c1

∂T
=

∆Q

RT 2
.

∆Q, the quantity of heat which it is necessary to supply for the dissociation of a molecule

of H2O into the ions
+

H and
−
HO, is, in accordance with Arrhenius, equal to the heat of
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ionization in the neutralization of a strong univalent base and acid in a dilute aqueous
solution, and, therefore, in accordance with the recent measurements of Wörmann,1

∆Q = 27,857− 48.5T gr. cal.

Using the number 1.985 for the ratio of the absolute gas constant R to the mechanical
equivalent of heat, it follows that:

∂ log c1

∂T
=

1

2 · 1.985

(
27,857

T 2
− 48.5

T

)
,

and by integration:

10

log c1 = −3047.3

T
− 12.125

10

log T + const.

This dependence of the degree of dissociation upon the temperature agrees very well
with the measurements of the electric conductivity of water at different temperatures
by Kohlrausch and Heydweiller, Noyes, and Lundén.

II. Dissociation of a Dissolved Electrolyte.

Let the system consists of an aqueous solution of acetic acid:

n0H2O, n1H4C2O2, n2

+

H, n3

−
H3C2O2.

The change under consideration consists in the dissociation of a molecule H4C2O2 into
its two ions, therefore

ν0 = 0, ν1 = −1, ν2 = 1, ν3 = 1.

Hence, for the state of equilibrium, in accordance with (6):

− log c1 + log c2 + log c3 = logK,

or, since c2 = c3:
c2

2

c1

= K.

Now the sum c1 + c2 = c is to be regarded as known, since the total number of the
undissociated and dissociated acid molecules is independent of the degree of dissocia-
tion. Therefore c1 and c2 may be calculated from K and c. An experimental test of
the equation of equilibrium is possible on account of the connection between the degree
of dissociation and electrical conductivity of the solution. In accordance with the elec-
trolytic dissociation theory of Arrhenius, the ratio of the molecular conductivity λ of
the solution in any dilution to the molecular conductivity λ∞ of the solution in infinite
dilution is:

λ

λ∞
=

c2

c1 + c2

=
c2

c
,

1Ad Heydweiller, Ann. d. Phys., 28, 506, 1909.
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since electric conduction is accounted for by the dissociated molecules only. It follows
then, with the aid of the last equation, that:

λ2c

λ∞ − λ
= K · λ∞ = const.

With unlimited decreasing c, λ increases to λ∞. This “law of dilution” for binary
electrolytes, first enunciated by Ostwald, has been confirmed in numerous cases by
experiment, as in the case of acetic acid.

Also, the dependence of the degree of dissociation upon the temperature is indicated
here in quite an analogous manner to that in the example considered above, of the
dissociation of water.

III. Vaporization or Solidification of a Pure Liquid.

In equilibrium the system consists of two phases, one liquid, and one gaseous or
solid:

n0m0 | n0
′m0

′.

Each phase contains only a single molecular complex (the solvent), but the molecules
in both phases do not need to be the same. Now, if a liquid molecule evaporates or
solidifies, then in our notation

ν0 = −1, ν0
′ =

m0

m0
′ , c0 = 1, c0

′ = 1,

and consequently the condition for equilibrium, in accordance with (6), is:

0 = logK. (8)

Since K depends only upon p and T , this equation therefore expresses a definite relation
between p and T : the law of dependence of the pressure of vaporization (or melting
pressure) upon the temperature, or vice versa. The import of this law is obtained
through the consideration of the dependence of the quantity K upon p and T . If we
form the complete differential of the last equation, there results:

0 =
∂ logK

∂p
dp+

∂ logK

∂T
dT,

or, in accordance with (7):

0 = −∆V

T
dp+

∆Q

T 2
dT.

If v0 and v0
′ denote the molecular volumes of the two phases, then:

∆V =
m0v0

′

m0
′ − v0,

consequently:

∆Q = T

(
m0v0

′

m0
′ − v0

)
dp

dT
,

or, referred to unit mass:

∆Q

m0

= T

(
v0
′

m0
′ −

v0

m0

)
· dp
dT

,

the well-known formula of Carnot and Clapeyron.
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IV. The Vaporization or Solidification of a Solution of Non-Volatile
Substances.

Most aqueous salt solutions afford examples. The symbol of the system in this case
is, since the second phase (gaseous or solid) contains only a single molecular complex:

n0m0, n1m1, n2m2, · · · | n0
′m0

′.

The change is represented by:

ν0 = −1, ν1 = 0, ν2 = 0, · · · ν0
′ =

m0

m0
′ ,

and hence the condition of equilibrium, in accordance with (6), is:

− log c0 = logK,

or, since to small quantities of higher order:

c0 =
n0

n0 + n1 + n2 + · · ·
= 1− n1 + n2 + · · ·

n0

,

n1 + n2 + · · ·
n0

= logK. (9)

A comparison with formula (8), found in example III, shows that through the solu-
tion of a foreign substance there is involved in the total concentration a small propor-
tionate departure from the law of vaporization or solidification which holds for the pure
solvent. One can express this, either by saying: at a fixed pressure p, the boiling point
or the freezing point T of the solution is different than that (T0) for the pure solvent, or:
at a fixed temperature T the vapor pressure or solidification pressure p of the solution
is different from that (p0) of the pure solvent. Let us calculate the departure in both
cases.

1. If T0 be the boiling (or freezing temperature) of the pure solvent at the pressure p,
then, in accordance with (8):

(logK)T=T0 = 0,

and by subtraction of (9) there results:

logK − (logK)T=T0 =
n1 + n2 + · · ·

n0

.

Now, since T is little different from T0, we may write in place of this equation, with the
aid of (7):

∂ logK

∂T
(T − T0) =

∆Q

RT 2
0

(T − T0) =
n1 + n2 + · · ·

n0

,

and from this it follows that:

T − T0 =
n1 + n2 + · · ·

n0

· RT
2
0

∆Q
. (10)

This is the law for the raising of the boiling point or for the lowering of the freezing
point, first derived by van’t Hoff: in the case of freezing ∆Q (the heat taken from the
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surroundings during the freezing of a liquid molecule) is negative. Since n0 and ∆Q
occur only as a product, it is not possible to infer anything from this formula with
regard to the molecular number of the liquid solvent.

2. If p0 be the vapor pressure of the pure solvent at the temperature T , then, in
accordance with (8):

(logK)p=p0 = 0,

and by subtraction of (9) there results:

logK − (logK)p=p0 =
n1 + n2 + · · ·

n0

.

Now, since p and p0 are nearly equal, with the aid of (7) we may write:

∂ logK

∂p
(p− p0) = −∆V

RT
(p− p0) =

n1 + n2 + · · ·
n0

,

and from this it follows, if ∆V be placed equal to the volume of the gaseous molecule
produced in the vaporization of a liquid molecule:

∆V =
m0

m0
′
RT

p
,

p0 − p
p

=
m0
′

m0

· n1 + n2 + · · ·
n0

.

This is the law of relative depression of the vapor pressure, first derived by van’t Hoff.
Since n0 and m0 occur only as a product, it is not possible to infer from this formula
anything with regard to the molecular weight of the liquid solvent. Frequently the
factor m0

′/m0 is left out in this formula; but this is not allowable when m0 and m0
′ are

unequal (as, e. g., in the case of water).

V. Vaporization of a Solution of Volatile Substances.

(E. g.., a Sufficiently Dilute Solution of Propyl Alcohol in Water.)

The system, consisting of two phases, is represented by the following symbol:

n0m0, n1m1, n2m2, · · · | n0
′m0

′, n1
′m1

′, n2
′m2

′, · · · ,

wherein, as above, the figure 0 refers to the solvent and the figures 1, 2, 3 · · · refer to
the various molecular complexes of the dissolved substances. By the addition of primes
in the case of the molecular weights (m0

′, m1
′, m2

′ · · · ) the possibility is left open that
the various molecular complexes in the vapor may possess a different molecular weight
than in the liquid.

Since the system here considered may experience various sorts of changes, there are
also various conditions of equilibrium to fulfill, each of which relates to a definite sort of
transformation. Let us consider first that change which consists in the vaporization of
the solvent. In accordance with our scheme of notation, the following conditions hold:

ν0 = −1, ν1 = 0, ν2 = 0, · · · ν ′0 =
m0

m0
′ , ν1

′ = 0, ν2
′ = 0, · · · ,
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and, therefore, the condition of equilibrium (6) becomes:

− log c0 +
m0

m0
′ log c0

′ = logK,

or, if one substitutes:

c0 = 1− n1 + n2 + · · ·
n0

and c0
′ = 1− n1

′ + n2
′ + · · ·

n0
′ ,

n1 + n2 + · · ·
n0

− m0

m0
′ ·
n1
′ + n2

′ + · · ·
n0
′ = logK.

If we treat this equation upon equation (9) as a model, there results an equation similar
to (10):

T − T0 =

(
n1 + n2 + · · ·

n0m0

− n1
′ + n2

′ + · · ·
n0
′m0

′

)
RT 2

0m0

∆Q
.

Here ∆Q is the heat effect in the vaporization of one molecule of the solvent and,
therefore, ∆Q/m0 is the heat effect in the vaporization of a unit mass of the solvent.

We remark, once more, that the solvent always occurs in the formula through the
mass only, and not through the molecular number or the molecular weight, while, on
the other hand, in the case of the dissolved substances, the molecular state is charac-
teristic on account of their influence upon vaporization. Finally, the formula contains a
generalization of the law of van’t Hoff, stated above, for the raising of the boiling point,
in that here in place of the number of dissolved molecules in the liquid, the difference
between the number of dissolved molecules in unit mass of the liquid and in unit mass
of the vapor appears. According as the unit mass of liquid or the unit mass of vapor
contains more dissolved molecules, there results for the solution a raising or lowering of
the boiling point; in the limiting case, when both quantities are equal, and the mixture
therefore boils without changing, the change in boiling point becomes equal to zero. Of
course, there are corresponding laws holding for the change in the vapor pressure.

Let us consider now a change which consists in the vaporization of a dissolved
molecule. For this case we have in our notation

ν0 = 0, ν1 = −1, ν2 = 0 · · · , ν0
′ = 0, ν1

′ =
m1

m1
′ , ν2

′ = 0, · · ·

and, in accordance with (6), for the condition of equilibrium:

− log c1 +
m1

m1
′ log c1

′ = logK

or:
c1
′
m1
m1

′

c1

= K.

This equation expresses the Nernst law of distribution. If the dissolved substance
possesses in both phases the same molecular weight (m1 = m1

′), then, in a state of
equilibrium a fixed ratio of the concentrations c1 and c1

′ in the liquid and in the vapor
exists, which depends only upon the pressure and temperature. But, if the dissolved
substance polymerises somewhat in the liquid, then the relation demanded in the last
equation appears in place of the simple ratio.
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VI. The Dissolved Substance only Passes over into the Second Phase.

This case is in a certain sense a special case of the one preceding. To it belongs that
of the solubility of a slightly soluble salt, first investigated by van’t Hoff, e. g., succinic
acid in water. The symbol of this system is:

n0H2O, n1H6C4O4 | n0
′H6C4O4,

in which we disregard the small dissociation of the acid solution. The concentrations of
the individual molecular complexes are:

c0 =
n0

n0 + n1

, c1 =
n1

n0 + n1

, c0
′ =

n0
′

n0
′ = 1.

For the precipitation of solid succinic acid we have:

ν0 = 0, ν1 = −1, ν0
′ = 1,

and, therefore, from the condition of equilibrium (6):

− log c1 = logK,

hence, from (7):

∆Q = −RT 2∂ log c1

∂T
.

By means of this equation van’t Hoff calculated the heat of solution ∆Q from the
solubility of succinic acid at 0◦ and at 8.5◦ C. The corresponding numbers were 2.88
and 4.22 in an arbitrary unit. Approximately, then:

∂ log c1

∂T
=

e

log 4.22−
e

log 2.88

8.5
= 0.04494,

from which for T = 273:

∆Q = −1.98 · 2732 · 0.04494 = −6,600 cal.,

that is, in the precipitation of a molecule of succinic acid, 6,600 cal. are given out to the
surroundings. Berthelot found, however, through direct measurement, 6,700 calories
for the heat of solution.

The absorption of a gas also comes under this head, e. g. carbonic acid, in a liq-
uid of relatively unnoticeable smaller vapor pressure, e. g., water at not too high a
temperature. The symbol of the system is then

n0H2O, n1CO2 | n0
′CO2.

The vaporization of a molecule CO2 corresponds to the values

ν0 = 0, ν1 = −1, ν0
′ = 1.

The condition of equilibrium is therefore again:

− log c1 = logK,
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i. e., at a fixed temperature and a fixed pressure the concentration c1 of the gas in the
solution is constant. The change of the concentration with p and T is obtained through
substitution in equation (7). It follows from this that:

∂ log c1

∂p
=

∆V

RT
,

∂ log c1

∂T
= −∆Q

RT 2
.

∆V is the change in volume of the system which occurs in the isobaric-isothermal
vaporization of a molecule of CO2, ∆Q the quantity of heat absorbed in the process
from outside. Now, since ∆V represents approximately the volume of a molecule of
gaseous carbonic acid, we may put approximately:

∆V =
RT

p
,

and the equation gives:
∂ log c1

∂p
=

1

p
,

which integrated, gives:

log c1 = log p+ const., c1 = C · p,

i. e., the concentration of the dissolved gas is proportional to the pressure of the free
gas above the solution (law of Henry and Bunsen). The factor of proportionality C,
which furnishes a measure of the solubility of the gas, depends upon the heat effect in
quite the same manner as in the example previously considered.

A number of no less important relations are easily derived as by-products of those
found above, e. g., the Nernst laws concerning the influence of solubility, the Arrhenius
theory of isohydric solutions, etc. All such may be obtained through the application
of the general condition of equilibrium (6). In conclusion, there is one other case that
I desire to treat here. In the historical development of the theory this has played a
particularly important rôle.

VII. Osmotic Pressure.

We consider now a dilute solution separated by a membrane (permeable with regard
to the solvent but impermeable as regards the dissolved substance) from the pure solvent
(in the same state of aggregation), and inquire as to the condition of equilibrium. The
symbol of the system considered we may again take as

n0m0, n1m1, n2m2, · · · | n0
′m0.

The condition of equilibrium is also here again expressed by equation (6), valid for a
change of state in which the temperature and the pressure in each phase is maintained
constant. The only difference with respect to the cases treated earlier is this, that here,
in the presence of a separating membrane between two phases, the pressure p in the first
phase may be different from the pressure p′ in the second phase, whereby by “pressure,”
as always, is to be understood the ordinary hydrostatic or manometric pressure.
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The proof of the applicability of equation (6) is found in the same way as this
equation was derived above, proceeding from the principle of increase of entropy. One
has but to remember that, in the somewhat more general case here considered, the
external work in a given change is represented by the sum pdV +p′dV ′, where V and V ′

denote the volumes of the two individual phases, while before V denoted the total
volume of all phases. Accordingly, we use, instead of (7), to express the dependence of
the constant K in (6) upon the pressure:

∂ logK

∂p
= −∆V

RT
,

∂ logK

∂p′
= −∆V ′

RT
. (11)

We have here to do with the following change:

ν0 = −1, ν1 = 0, ν2 = 0, · · · , ν0
′ = 1,

whereby is expressed, that a molecule of the solvent passes out of the solution through
the membrane into the pure solvent. Hence, in accordance with (6):

− log c0 = logK,

or, since

c0 = 1− n1 + n2 + · · ·
n0

,
n1 + n2 + · · ·

n0

= logK.

Here K depends only upon T , p and p′. If a pure solvent were present upon both sides
of the membrane, we should have c0 = 1, and p = p′; consequently:

(logK)p=p′ = 0,

and by subtraction of the last two equations:

n1 + n2 + · · ·
n0

= logK − (logK)p=p′ =
∂ logK

∂p
(p− p′)

and in accordance with (11):

n1 + n2 + · · ·
n0

= −(p− p′) · ∆V

RT
.

Here ∆V denotes the change in volume of the solution due to the loss of a molecule of
the solvent (ν0 = −1). Approximately then:

−∆V · n0 = V,

the volume of the whole solution, and

n1 + n2 + · · ·
n0

= (p− p′) · V
RT

.

If we call the difference p−p′, the osmotic pressure of the solution, this equation contains
the well known law of osmotic pressure, due to van’t Hoff.
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The equations here derived, which easily permit of multiplication and generalization,
have, of course, for the most part not been derived in the ways described above, but have
been derived, either directly from experiment, or theoretically from the consideration
of special reversible isothermal cycles to which the thermodynamic law was applied,
that in such a cyclic process not only the algebraic sum of the work produced and the
heat produced, but that also each of these two quantities separately, is equal to zero
(first lecture, p. 18). The employment of a cyclic process has the advantage over the
procedure here proposed, that in it the connection between the directly measurable
quantities and the requirements of the laws of thermodynamics succinctly appears in
each case; but for each individual case a satisfactory cyclic process must be imagined,
and one has not always the certain assurance that the thermodynamic realization of
the cyclic process also actually supplies all the conditions of equilibrium. Furthermore,
in the process of calculation certain terms of considerable weight frequently appear as
empty ballast, since they disappear at the end in the summation over the individual
phases of the process.

On the other hand, the significance of the process here employed consists therein,
that the necessary and sufficient conditions of equilibrium for each individually con-
sidered case appear collectively in the single equation (6), and that they are derived
collectively from it in a direct manner through an unambiguous procedure. The more
complicated the systems considered are, the more apparent becomes the advantage of
this method, and there is no doubt in my mind that in chemical circles it will be more
and more employed, especially, since in general it is now the custom to deal directly
with the energies, and not with cyclic processes, in the calculation of heat effects in
chemical changes.
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THIRD LECTURE.

The Atomic Theory of Matter.

The problem with which we shall be occupied in the present lecture is that of a
closer investigation of the atomic theory of matter. It is, however, not my intention
to introduce this theory with nothing further, and to set it up as something apart
and disconnected with other physical theories, but I intend above all to bring out the
peculiar significance of the atomic theory as related to the present general system of
theoretical physics; for in this way only will it be possible to regard the whole system
as one containing within itself the essential compact unity, and thereby to realize the
principal object of these lectures.

Consequently it is self evident that we must rely on that sort of treatment which
we have recognized in last week’s lecture as fundamental. That is, the division of all
physical processes into reversible and irreversible processes. Furthermore, we shall be
convinced that the accomplishment of this division is only possible through the atomic
theory of matter, or, in other words, that irreversibility leads of necessity to atomistics.

I have already referred at the close of the first lecture to the fact that in pure
thermodynamics, which knows nothing of an atomic structure and which regards all
substances as absolutely continuous, the difference between reversible and irreversible
processes can only be defined in one way, which a priori carries a provisional character
and does not withstand penetrating analysis. This appears immediately evident when
one reflects that the purely thermodynamic definition of irreversibility which proceeds
from the impossibility of the realization of certain changes in nature, as, e. g., the
transformation of heat into work without compensation, has at the outset assumed a
definite limit to man’s mental capacity, while, however, such a limit is not indicated in
reality. On the contrary: mankind is making every endeavor to press beyond the present
boundaries of its capacity, and we hope that later on many things will be attained which,
perhaps, many regard at present as impossible of accomplishment. Can it not happen
then that a process, which up to the present has been regarded as irreversible, may be
proved, through a new discovery or invention, to be reversible? In this case the whole
structure of the second law would undeniably collapse, for the irreversibility of a single
process conditions that of all the others.

It is evident then that the only means to assure to the second law real meaning
consists in this, that the idea of irreversibility be made independent of any relationship
to man and especially of all technical relations.

Now the idea of irreversibility harks back to the idea of entropy; for a process is
irreversible when it is connected with an increase of entropy. The problem is hereby re-
ferred back to a proper improvement of the definition of entropy. In accordance with the
original definition of Clausius, the entropy is measured by means of a certain reversible
process, and the weakness of this definition rests upon the fact that many such reversible
processes, strictly speaking all, are not capable of being carried out in practice. With
some reason it may be objected that we have here to do, not with an actual process and
an actual physicist, but only with ideal processes, so-called thought experiments, and
with an ideal physicist who operates with all the experimental methods with absolute
accuracy. But at this point the difficulty is encountered: How far do the physicist’s
ideal measurements of this sort suffice? It may be understood, by passing to the limit,
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that a gas is compressed by a pressure which is equal to the pressure of the gas, and
is heated by a heat reservoir which possesses the same temperature as the gas, but, for
example, that a saturated vapor shall be transformed through isothermal compression
in a reversible manner to a liquid without at any time a part of the vapor being con-
densed, as in certain thermodynamic considerations is supposed, must certainly appear
doubtful. Still more striking, however, is the liberty as regards thought experiments,
which in physical chemistry is granted the theorist. With his semi-permeable mem-
branes, which in reality are only realizable under certain special conditions and then
only with a certain approximation, he separates in a reversible manner, not only all
possible varieties of molecules, whether or not they are in stable or unstable condi-
tions, but he also separates the oppositely charged ions from one another and from
the undissociated molecules, and he is disturbed, neither by the enormous electrostatic
forces which resist such a separation, nor by the circumstance that in reality, from the
beginning of the separation, the molecules become in part dissociated while the ions
in part again combine. But such ideal processes are necessary throughout in order to
make possible the comparison of the entropy of the undissociated molecules with the
entropy of the dissociated molecules; for the law of thermodynamic equilibrium does
not permit in general of derivation in any other way, in case one wishes to retain pure
thermodynamics as a basis. It must be considered remarkable that all these ingenious
thought processes have so well found confirmation of their results in experience, as is
shown by the examples considered by us in the last lecture.

If now, on the other hand, one reflects that in all these results every reference to the
possibility of actually carrying out each ideal process has disappeared—there are cer-
tainly left relations between directly measurable quantities only, such as temperature,
heat effect, concentration, etc.—the presumption forces itself upon one that perhaps the
introduction as above of such ideal processes is at bottom a round-about method, and
that the peculiar import of the principle of increase of entropy with all its consequences
can be evolved from the original idea of irreversibility or, just as well, from the impos-
sibility of perpetual motion of the second kind, just as the principle of conservation of
energy has been evolved from the law of impossibility of perpetual motion of the first
kind.

This step: to have completed the emancipation of the entropy idea from the ex-
perimental art of man and the elevation of the second law thereby to a real principle,
was the scientific life’s work of Ludwig Boltzmann. Briefly stated, it consisted in gen-
eral of referring back the idea of entropy to the idea of probability. Thereby is also
explained, at the same time, the significance of the above (p. 17) auxiliary term used
by me; “preference” of nature for a definite state. Nature prefers the more probable
states to the less probable, because in nature processes take place in the direction of
greater probability. Heat goes from a body at higher temperature to a body at lower
temperature because the state of equal temperature distribution is more probable than
a state of unequal temperature distribution.

Through this conception the second law of thermodynamics is removed at one stroke
from its isolated position, the mystery concerning the preference of nature vanishes, and
the entropy principle reduces to a well understood law of the calculus of probability.

The enormous fruitfulness of so “objective” a definition of entropy for all domains
of physics I shall seek to demonstrate in the following lectures. But today we have
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principally to do with the proof of its admissibility; for on closer consideration we shall
immediately perceive that the new conception of entropy at once introduces a great
number of questions, new requirements and difficult problems. The first requirement
is the introduction of the atomic hypothesis into the system of physics. For, if one
wishes to speak of the probability of a physical state, i. e., if he wishes to introduce
the probability for a given state as a definite quantity into the calculation, this can
only be brought about, as in cases of all probability calculations, by referring the state
back to a variety of possibilities; i. e., by considering a finite number of a priori equally
likely configurations (complexions) through each of which the state considered may be
realized. The greater the number of complexions, the greater is the probability of the
state. Thus, e. g., the probability of throwing a total of four with two ordinary six-sided
dice is found through counting the complexions by which the throw with a total of four
may be realized. Of these there are three complexions:

with the first die, 1, with the second die, 3,
with the first die, 2, with the second die, 2,
with the first die, 3, with the second die, 1.

On the other hand, the throw of two is only realized through a single complexion.
Therefore, the probability of throwing a total of four is three times as great as the
probability of throwing a total of two.

Now, in connection with the physical state under consideration, in order to be
able to differentiate completely from one another the complexions realizing it, and to
associate it with a definite reckonable number, there is obviously no other means than
to regard it as made up of numerous discrete homogeneous elements—for in perfectly
continuous systems there exist no reckonable elements—and hereby the atomistic view
is made a fundamental requirement. We have, therefore, to regard all bodies in nature,
in so far as they possess an entropy, as constituted of atoms, and we therefore arrive
in physics at the same conception of matter as that which obtained in chemistry for so
long previously.

But we can immediately go a step further yet. The conclusions reached hold, not
only for thermodynamics of material bodies, but also possess complete validity for the
processes of heat radiation, which are thus referred back to the second law of thermo-
dynamics. That radiant heat also possesses an entropy follows from the fact that a
body which emits radiation into a surrounding diathermanous medium experiences a
loss of heat and, therefore, a decrease of entropy. Since the total entropy of a physical
system can only increase, it follows that one part of the entropy of the whole system,
consisting of the body and the diathermanous medium, must be contained in the ra-
diated heat. If the entropy of the radiant heat is to be referred back to the notion of
probability, we are forced, in a similar way as above, to the conclusion that for radiant
heat the atomic conception possesses a definite meaning. But, since radiant heat is not
directly connected with matter, it follows that this atomistic conception relates, not to
matter, but only to energy, and hence, that in heat radiation certain energy elements
play an essential rôle. Even though this conclusion appears so singular and even though
in many circles today vigorous objection is strongly urged against it, in the long run
physical research will not be able to withhold its sanction from it, and the less, since
it is confirmed by experience in quite a satisfactory manner. We shall return to this
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point in the lectures on heat radiation. I desire here only to mention that the novelty
involved by the introduction of atomistic conceptions into the theory of heat radiation
is by no means so revolutionary as, perhaps, might appear at the first glance. For there
is, in my opinion at least, nothing which makes necessary the consideration of the heat
processes in a complete vacuum as atomic, and it suffices to seek the atomistic features
at the source of radiation, i. e., in those processes which have their play in the centres of
emission and absorption of radiation. Then the Maxwellian electrodynamic differential
equations can retain completely their validity for the vacuum, and, besides, the dis-
crete elements of heat radiation are relegated exclusively to a domain which is still very
mysterious and where there is still present plenty of room for all sorts of hypotheses.

Returning to more general considerations, the most important question comes up
as to whether, with the introduction of atomistic conceptions and with the reference of
entropy to probability, the content of the principle of increase of entropy is exhaustively
comprehended, or whether still further physical hypotheses are required in order to
secure the full import of that principle. If this important question had been settled at the
time of the introduction of the atomic theory into thermodynamics, then the atomistic
views would surely have been spared a large number of conceivable misunderstandings
and justifiable attacks. For it turns out, in fact—and our further considerations will
confirm this conclusion—that there has as yet nothing been done with atomistics which
in itself requires much more than an essential generalization, in order to guarantee the
validity of the second law.

We must first reflect that, in accordance with the central idea laid down in the
first lecture (p. 11), the second law must possess validity as an objective physical law,
independently of the individuality of the physicist. There is nothing to hinder us from
imagining a physicist—we shall designate him a “microscopic” observer—whose senses
are so sharpened that he is able to recognize each individual atom and to follow it in its
motion. For this observer each atom moves exactly in accordance with the elementary
laws which general dynamics lays down for it, and these laws allow, so far as we know,
of an inverse performance of every process. Accordingly, here again the question is
neither one of probability nor of entropy and its increase. Let us imagine, on the
other hand, another observer, designated a “macroscopic” observer, who regards an
ensemble of atoms as a homogeneous gas, say, and consequently applies the laws of
thermodynamics to the mechanical and thermal processes within it. Then, for such an
observer, in accordance with the second law, the process in general is an irreversible
process. Would not now the first observer be justified in saying: “The reference of the
entropy to probability has its origin in the fact that irreversible processes ought to be
explained through reversible processes. At any rate, this procedure appears to me in the
highest degree dubious. In any case, I declare each change of state which takes place in
the ensemble of atoms designated a gas, as reversible, in opposition to the macroscopic
observer.” There is not the slightest thing, so far as I know, that one can urge against
the validity of these statements. But do we not thereby place ourselves in the painful
position of the judge who declared in a trial the correctness of the position of each
separately of two contending parties and then, when a third contends that only one of
the parties could emerge from the process victorious, was obliged to declare him also
correct? Fortunately we find ourselves in a more favorable position. We can certainly
mediate between the two parties without its being necessary for one or the other to give
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up his principal point of view. For closer consideration shows that the whole controversy
rests upon a misunderstanding—a new proof of how necessary it is before one begins a
controversy to come to an understanding with his opponent concerning the subject of
the quarrel. Certainly, a given change of state cannot be both reversible and irreversible.
But the one observer connects a wholly different idea with the phrase “change of state”
than the other. What is then, in general, a change of state? The state of a physical
system cannot well be otherwise defined than as the aggregate of all those physical
quantities, through whose instantaneous values the time changes of the quantities, with
given boundary conditions, are uniquely determined. If we inquire now, in accordance
with the import of this definition, of the two observers as to what they understand by
the state of the collection of atoms or the gas considered, they will give quite different
answers. The microscopic observer will mention those quantities which determine the
position and the velocities of all the individual atoms. There are present in the simplest
case, namely, that in which the atoms may be considered as material points, six times
as many quantities as atoms, namely, for each atom the three coordinates and the three
velocity components, and in the case of combined molecules, still more quantities. For
him the state and the progress of a process is then first determined when all these
various quantities are individually given. We shall designate the state defined in this
way the “micro-state.” The macroscopic observer, on the other hand, requires fewer
data. He will say that the state of the homogeneous gas considered by him is determined
by the density, the visible velocity and the temperature at each point of the gas, and he
will expect that, when these quantities are given, their time variations and, therefore,
the progress of the process, to be completely determined in accordance with the two
laws of thermo-dynamics, and therefore accompanied by an increase in entropy. In this
connection he can call upon all the experience at his disposal, which will fully confirm
his expectation. If we call this state the “macro-state,” it is clear that the two laws: “the
micro-changes of state are reversible” and “the macro-changes of state are irreversible,”
lie in wholly different domains and, at any rate, are not contradictory.

But now how can we succeed in bringing the two observers to an understanding?
This is a question whose answer is obviously of fundamental significance for the atomic
theory. First of all, it is easy to see that the macro-observer reckons only with mean
values; for what he calls density, visible velocity and temperature of the gas are, for
the micro-observer, certain mean values, statistical data, which are derived from the
space distribution and from the velocities of the atoms in an appropriate manner. But
the micro-observer cannot operate with these mean values alone, for, if these are given
at one instant of time, the progress of the process is not determined throughout; on
the contrary: he can easily find with given mean values an enormously large number
of individual values for the positions and the velocities of the atoms, all of which cor-
respond with the same mean values and which, in spite of this, lead to quite different
processes with regard to the mean values. It follows from this of necessity that the
micro-observer must either give up the attempt to understand the unique progress, in
accordance with experience, of the macroscopic changes of state—and this would be
the end of the atomic theory—or that he, through the introduction of a special physical
hypothesis, restrict in a suitable manner the manifold of micro-states considered by
him. There is certainly nothing to prevent him from assuming that not all conceivable
micro-states are realizable in nature, and that certain of them are in fact thinkable, but
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never actually realized. In the formularization of such a hypothesis, there is of course no
point of departure to be found from the principles of dynamics alone; for pure dynam-
ics leaves this case undetermined. But on just this account any dynamical hypothesis,
which involves nothing further than a closer specification of the micro-states realized in
nature, is certainly permissible. Which hypothesis is to be given the preference can only
be decided through comparison of the results to which the different possible hypotheses
lead in the course of experience.

In order to limit the investigation in this way, we must obviously fix our attention
only upon all imaginable configurations and velocities of the individual atoms which
are compatible with determinate values of the density, the velocity and the temperature
of the gas, or in other words: we must consider all the micro-states which belong to
a determinate macro-state, and must investigate the various kinds of processes which
follow in accordance with the fixed laws of dynamics from the different micro-states.
Now, precise calculation has in every case always led to the important result that an
enormously large number of these different micro-processes relate to one and the same
macro-process, and that only proportionately few of the same, which are distinguished
by quite special exceptional conditions concerning the positions and the velocities of
neighboring atoms, furnish exceptions. Furthermore, it has also shown that one of the
resulting macro-processes is that which the macroscopic observer recognizes, so that it
is compatible with the second law of thermodynamics.

Here, manifestly, the bridge of understanding is supplied. The micro-observer needs
only to assimilate in his theory the physical hypothesis that all those special cases
in which special exceptional conditions exist among the neighboring configurations of
interacting atoms do not occur in nature, or, in other words, that the micro-states are
in elementary disorder. Then the uniqueness of the macroscopic process is assured and
with it, also, the fulfillment of the principle of increase of entropy in all directions.

Therefore, it is not the atomic distribution, but rather the hypothesis of elemen-
tary disorder, which forms the real kernel of the principle of increase of entropy and,
therefore, the preliminary condition for the existence of entropy. Without elementary
disorder there is neither entropy nor irreversible process.2 Therefore, a single atom can
never possess an entropy; for we cannot speak of disorder in connection with it. But
with a fairly large number of atoms, say 100 or 1,000, the matter is quite different.
Here, one can certainly speak of a disorder, in case that the values of the coordinates
and the velocity components are distributed among the atoms in accordance with the
laws of accident. Then it is possible to calculate the probability for a given state. But
how is it with regard to the increase of entropy? May we assert that the motion of
100 atoms is irreversible? Certainly not; but this is only because the state of 100 atoms

2To those physicists who, in spite of all this, regard the hypothesis of elementary disorder as
gratuitous or as incorrect, I wish to refer the simple fact that in every calculation of a coefficient of
friction, of diffusion, or of heat conduction, from molecular considerations, the notion of elementary
disorder is employed, whether tacitly or otherwise, and that it is therefore essentially more correct
to stipulate this condition instead of ignoring or concealing it. But he who regards the hypothesis of
elementary disorder as self-evident, should be reminded that, in accordance with a law of H. Poincaré,
the precise investigation concerning the foundation of which would here lead us too far, the assumption
of this hypothesis for all times is unwarranted for a closed space with absolutely smooth walls,—an
important conclusion, against which can only be urged the fact that absolutely smooth walls do not
exist in nature.
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cannot be defined in a thermodynamic sense, since the process does not proceed in a
unique manner from the standpoint of a macro-observer, and this requirement forms,
as we have seen above, the foundation and preliminary condition for the definition of a
thermodynamic state.

If one therefore asks: How many atoms are at least necessary in order that a process
may be considered irreversible?, the answer is: so many atoms that one may form from
them definite mean values which define the state in a macroscopic sense. One must
reflect that to secure the validity of the principle of increase of entropy there must be
added to the condition of elementary disorder still another, namely, that the number of
the elements under consideration be sufficiently large to render possible the formation
of definite mean values. The second law has a meaning for these mean values only; but
for them, it is quite exact, just as exact as the law of the calculus of probability, that
the mean value, so far as it may be defined, of a sufficiently large number of throws
with a six-sided die, is 31

2
.

These considerations are, at the same time, capable of throwing light upon questions
such as the following: Does the principle of increase of entropy possess a meaning for
the so-called Brownian molecular movement of a suspended particle? Does the kinetic
energy of this motion represent useful work or not? The entropy principle is just as
little valid for a single suspended particle as for an atom, and therefore is not valid for
a few of them, but only when there is so large a number that definite mean values can
be formed. That one is able to see the particles and not the atoms makes no material
difference; because the progress of a process does not depend upon the power of an
observing instrument. The question with regard to useful work plays no rôle in this
connection; strictly speaking, this possesses, in general, no objective physical meaning.
For it does not admit of an answer without reference to the scheme of the physicist or
technician who proposes to make use of the work in question. The second law, therefore,
has fundamentally nothing to do with the idea of useful work (cf. first lecture, p. 16).

But, if the entropy principle is to hold, a further assumption is necessary, concerning
the various disordered elements,—an assumption which tacitly is commonly made and
which we have not previously definitely expressed. It is, however, not less important
than those referred to above. The elements must actually be of the same kind, or
they must at least form a number of groups of like kind, e. g., constitute a mixture in
which each kind of element occurs in large numbers. For only through the similarity
of the elements does it come about that order and law can result in the larger from
the smaller. If the molecules of a gas be all different from one another, the properties
of a gas can never show so simple a law-abiding behavior as that which is indicated
by thermodynamics. In fact, the calculation of the probability of a state presupposes
that all complexions which correspond to the state are a priori equally likely. Without
this condition one is just as little able to calculate the probability of a given state as,
for instance, the probability of a given throw with dice whose sides are unequal in
size. In summing up we may therefore say: the second law of thermodynamics in its
objective physical conception, freed from anthropomorphism, relates to certain mean
values which are formed from a large number of disordered elements of the same kind.

The validity of the principle of increase of entropy and of the irreversible progress of
thermodynamic processes in nature is completely assured in this formularization. After
the introduction of the hypothesis of elementary disorder, the microscopic observer can
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no longer confidently assert that each process considered by him in a collection of atoms
is reversible; for the motion occurring in the reverse order will not always obey the re-
quirements of that hypothesis. In fact, the motions of single atoms are always reversible,
and thus far one may say, as before, that the irreversible processes appear reduced to a
reversible process, but the phenomenon as a whole is nevertheless irreversible, because
upon reversal the disorder of the numerous individual elementary processes would be
eliminated. Irreversibility is inherent, not in the individual elementary processes them-
selves, but solely in their irregular constitution. It is this only which guarantees the
unique change of the macroscopic mean values.

Thus, for example, the reverse progress of a frictional process is impossible, in that
it would presuppose elementary arrangement of interacting neighboring molecules. For
the collisions between any two molecules must thereby possess a certain distinguishing
character, in that the velocities of two colliding molecules depend in a definite way
upon the place at which they meet. In this way only can it happen that in collisions
like directed velocities ensue and, therefore, visible motion.

Previously we have only referred to the principle of elementary disorder in its ap-
plication to the atomic theory of matter. But it may also be assumed as valid, as I
wish to indicate at this point, on quite the same grounds as those holding in the case
of matter, for the theory of radiant heat. Let us consider, e. g., two bodies at different
temperatures between which exchange of heat occurs through radiation. We can in this
case also imagine a microscopic observer, as opposed to the ordinary macroscopic ob-
server, who possesses insight into all the particulars of electromagnetic processes which
are connected with emission and absorption, and the propagation of heat rays. The
microscopic observer would declare the whole process reversible because all electrody-
namic processes can also take place in the reverse direction, and the contradiction may
here be referred back to a difference in definition of the state of a heat ray. Thus, while
the macroscopic observer completely defines a monochromatic ray through direction,
state of polarization, color, and intensity, the microscopic observer, in order to possess
a complete knowledge of an electromagnetic state, necessarily requires the specification
of all the numerous irregular variations of amplitude and phase to which the most ho-
mogeneous heat ray is actually subject. That such irregular variations actually exist
follows immediately from the well known fact that two rays of the same color never
interfere, except when they originate in the same source of light. But until these fluc-
tuations are given in all particulars, the micro-observer can say nothing with regard to
the progress of the process. He is also unable to specify whether the exchange of heat
radiation between the two bodies leads to a decrease or to an increase of their differ-
ence in temperature. The principle of elementary disorder first furnishes the adequate
criterion of the tendency of the radiation process, i. e., the warming of the colder body
at the expense of the warmer, just as the same principle conditions the irreversibility
of exchange of heat through conduction. However, in the two cases compared, there is
indicated an essential difference in the kind of the disorder. While in heat conduction
the disordered elements may be represented as associated with the various molecules,
in heat radiation there are the numerous vibration periods, connected with a heat ray,
among which the energy of radiation is irregularly distributed. In other words: the dis-
order among the molecules is a material one, while in heat radiation it is one of energy
distribution. This is the most important difference between the two kinds of disorder;
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a common feature exists as regards the great number of uncoordinated elements re-
quired. Just as the entropy of a body is defined as a function of the macroscopic state,
only when the body contains so many atoms that from them definite mean values may
be formed, so the entropy principle only possesses a meaning with regard to a heat
ray when the ray comprehends so many periodic vibrations, i. e., persists for so long a
time, that a definite mean value for the intensity of the ray may be obtained from the
successive irregular fluctuating amplitudes.

Now, after the principle of elementary disorder has been introduced and accepted
by us as valid throughout nature, the fundamental question arises as to the calculation
of the probability of a given state, and the actual derivation of the entropy therefrom.
From the entropy all the laws of thermodynamic states of equilibrium, for material
substances, and also for energy radiation, may be uniquely derived. With regard to the
connection between entropy and probability, this is inferred very simply from the law
that the probability of two independent configurations is represented by the product of
the individual probabilities:

W = W1 ·W2,

while the entropy S is represented by the sum of the individual entropies:

S = S1 + S2.

Accordingly, the entropy is proportional to the logarithm of the probability:

S = k logW. (12)

k is a universal constant. In particular, it is the same for atomic as for radiation config-
urations, for there is nothing to prevent us assuming that the configuration designated
by 1 is atomic, while that designated by 2 is a radiation configuration. If k has been cal-
culated, say with the aid of radiation measurements, then k must have the same value
for atomic processes. Later we shall follow this procedure, in order to utilize the laws of
heat radiation in the kinetic theory of gases. Now, there remains, as the last and most
difficult part of the problem, the calculation of the probability W of a given physical
configuration in a given macroscopic state. We shall treat today, by way of preparation
for the quite general problem to follow, the simple problem: to specify the probability
of a given state for a single moving material point, subject to given conservative forces.
Since the state depends upon 6 variables: the 3 generalized coordinates ϕ1, ϕ2, ϕ3, and
the three corresponding velocity components ϕ̇1, ϕ̇2, ϕ̇3, and since all possible values
of these 6 variables constitute a continuous manifold, the probability sought is, that
these 6 quantities shall lie respectively within certain infinitely small intervals, or, if
one thinks of these 6 quantities as the rectilinear orthogonal coordinates of a point in
an ideal six-dimensional space, that this ideal “state point” shall fall within a given,
infinitely small “state domain.” Since the domain is infinitely small, the probability
will be proportional to the magnitude of the domain and therefore proportional to∫

dϕ1 · dϕ2 · dϕ3 · dϕ̇1 · dϕ̇2 · dϕ̇3.

But this expression cannot serve as an absolute measure of the probability, because
in general it changes in magnitude with the time, if each state point moves in accordance
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with the laws of motion of material points, while the probability of a state which follows
of necessity from another must be the same for the one as the other. Now, as is well
known, another integral quite similarly formed, may be specified in place of the one
above, which possesses the special property of not changing in value with the time.
It is only necessary to employ, in addition to the general coordinates ϕ1, ϕ2, ϕ3, the
three so-called momenta ψ1, ψ2, ψ3, in place of the three velocities ϕ̇1, ϕ̇2, ϕ̇3 as the
determining coordinates of the state. These are defined in the following way:

ψ1 =

(
∂H

∂ϕ̇1

)
ϕ

, ψ2 =

(
∂H

∂ϕ̇2

)
ϕ

, ψ3 =

(
∂H

∂ϕ̇3

)
ϕ

,

wherein H denotes the kinetic potential (Helmholz). Then, in Hamiltonian form, the
equations of motion are:

ψ̇1 =
dψ1

dt
= −

(
∂E

∂ϕ1

)
ψ

, · · · , ϕ̇1 =
dϕ1

dt
=

(
∂E

∂ψ1

)
ϕ

, · · · ,

(E is the energy), and from these equations follows the “condition of incompressibility”:

∂ϕ̇1

∂ϕ1

+
∂ψ̇1

∂ψ1

+ · · · = 0.

Referring to the six-dimensional space represented by the coordinates ϕ1, ϕ2, ϕ3, ψ1, ψ2,
ψ3, this equation states that the magnitude of an arbitrarily chosen state domain, viz.:∫

dϕ1 · dϕ2 · dϕ3 · dψ1 · dψ2 · dψ3

does not change with the time, when each point of the domain changes its position in
accordance with the laws of motion of material points. Accordingly, it is made possible
to take the magnitude of this domain as a direct measure for the probability that the
state point falls within the domain.

From the last expression, which can be easily generalized for the case of an arbitrary
number of variables, we shall calculate later the probability of a thermodynamic state,
for the case of radiant energy as well as that for material substances.
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FOURTH LECTURE.

The Equation of State for a Monatomic Gas.

My problem today is to utilize the general fundamental laws concerning the concept
of irreversibility, which we established in the lecture of yesterday, in the solution of a
definite problem: the calculation of the entropy of an ideal monatomic gas in a given
state, and the derivation of all its thermodynamic properties. The way in which we
have to proceed is prescribed for us by the general definition of entropy:

S = k logW. (13)

The chief part of our problem is the calculation of W for a given state of the gas, and
in this connection there is first required a more precise investigation of that which is to
be understood as the state of the gas. Obviously, the state is to be taken here solely
in the sense of the conception which we have called macroscopic in the last lecture.
Otherwise, a state would possess neither probability nor entropy. Furthermore, we are
not allowed to assume a condition of equilibrium for the gas. For this is characterized
through the further special condition that the entropy for it is a maximum. Thus, an
unequal distribution of density may exist in the gas; also, there may be present an
arbitrary number of different currents, and in general no kind of equality between the
various velocities of the molecules is to be assumed. The velocities, as the coordinates
of the molecules, are rather to be taken a priori as quite arbitrarily given, but in order
that the state, considered in a macroscopic sense, may be assumed as known, certain
mean values of the densities and the velocities must exist. Through these mean values
the state from a macroscopic standpoint is completely characterized.

The conditions mentioned will all be fulfilled if we consider the state as given in
such manner that the number of molecules in a sufficiently small macroscopic space, but
which, however, contains a very large number of molecules, is given, and furthermore,
that the (likewise great) number of these molecules is given, which are found in a
certain macroscopically small velocity domain, i. e., whose velocities lie within certain
small intervals. If we call the coordinates x, y, z, and the velocity components ẋ, ẏ, ż,
then this number will be proportional to3

dx · dy · dz · dẋ · dẏ · dż = σ.

It will depend, besides, upon a finite factor of proportionality which may be an arbi-
trarily given function f(x, y, z, ẋ, ẏ, ż) of the coordinates and the velocities, and which
has only the one condition to fulfill that∑

f · σ = N, (14)

where N denotes the total number of molecules in the gas. We are now concerned with
the calculation of the probability W of that state of the gas which corresponds to the
arbitrarily given distribution function f .

3We can call σ a “macro-differential” in contradistinction to the micro-differentials which are in-
finitely small with reference to the dimensions of a molecule. I prefer this terminology for the dis-
crimination between “physical” and “mathematical” differentials in spite of the inelegance of phrasing,
because the macro-differential is also just as much mathematical as physical and the micro-differential
just as much physical as mathematical.
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The probability that a given molecule possesses such coordinates and such velocities
that it lies within the domain σ is expressed, in accordance with the final result of the
previous lecture, by the magnitude of the corresponding elementary domain:

dϕ1 · dϕ2 · dϕ3 · dψ1 · dψ2 · dψ3,

therefore, since here

ϕ1 = x, ϕ2 = y, ϕ3 = z, ψ1 = mẋ, ψ2 = mẏ, ψ3 = mż,

(m the mass of a molecule) by
m3σ.

Now we divide the whole of the six dimensional “state domain” containing all the
molecules into suitable equal elementary domains of the magnitude m3σ. Then the
probability that a given molecule fall in a given elementary domain is equally great for
all such domains. Let P denote the number of these equal elementary domains. Next,
let us imagine as many dice as there are molecules present, i. e., N , and each die to
be provided with P equal sides. Upon these P sides we imagine numbers 1, 2, 3, · · ·
to P , so that each of the P sides indicates a given elementary domain. Then each
throw with the N dice corresponds to a given state of the gas, while the number of dice
which show a given number corresponds to the molecules which lie in the elementary
domain considered. In accordance with this, each single die can indicate with the same
probability each of the numbers from 1 to P , corresponding to the circumstance that
each molecule may fall with equal probability in any one of the P elementary domains.
The probability W sought, of the given state of the molecules, corresponds, therefore,
to the number of different kinds of throws (complexions) through which is realized the
given distribution f . Let us take, e. g., N equal to 10 molecules (dice) and P = 6
elementary domains (sides) and let us imagine the state so given that there are

3 molecules in 1st elementary domain
4 molecules in 2d elementary domain
0 molecules in 3d elementary domain
1 molecule in 4th elementary domain
0 molecules in 5th elementary domain
2 molecules in 6th elementary domain,

then this state, e. g., may be realized through a throw for which the 10 dice indicate
the following numbers:

1st 2d 3d 4th 5th 6th 7th 8th 9th 10th
2 6 2 1 1 2 6 2 1 4. (15)

Under each of the characters representing the ten dice stands the number which the die
indicates in the throw. In fact,

3 dice show the figure 1
4 dice show the figure 2
0 dice show the figure 3
1 die shows the figure 4
0 dice show the figure 5
2 dice show the figure 6.
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The state in question may likewise be realized through many other complexions of this
kind. The number sought of all possible complexions is now found through consideration
of the number series indicated in (15). For, since the number of molecules (dice) is given,
the number series contains a fixed number of elements (10 = N). Furthermore, since
the number of molecules falling in an elementary domain is given, each number, in
all permissible complexions, appears equally often in the series. Finally, each change
of the number configuration conditions a new complexion. The number of possible
complexions or the probability W of the given state is therefore equal to the number of
possible permutations with repetition under the conditions mentioned. In the simple
example chosen, in accordance with a well known formula, the probability is

10!

3! 4! 0! 1! 0! 2!
= 12,600.

Therefore, in the general case:

W =
N !∏

(f · σ)!
.

The sign
∏

denotes the product extended over all of the P elementary domains.
From this there results, in accordance with equation (13), for the entropy of the gas

in the given state:
S = k logN !− k

∑
log(f · σ)!.

The summation is to be extended over all domains σ. Since f · σ is a large quantity,
Stirling’s formula may be employed for its factorial, which for a large number n is
expressed by:

n! =
(n
e

)n√
2πn, (16)

therefore, neglecting unimportant terms:

log n! = n(log n− 1);

and hence:
S = k logN !− k

∑
fσ(log[f · σ]− 1),

or, if we note that σ and N =
∑
fσ remain constant in all changes of state:

S = const− k
∑
f · log f · σ. (17)

This quantity is, to the universal factor (−k), the same as that which L. Boltzmann
denoted by H, and which he showed to vary in one direction only for all changes of
state.

In particular, we will now determine the entropy of a gas in a state of equilibrium,
and inquire first as to that form of the law of distribution which corresponds to thermo-
dynamic equilibrium. In accordance with the second law of thermodynamics, a state
of equilibrium is characterized by the condition that with given values of the total vol-
ume V and the total energy E, the entropy S assumes its maximum value. If we assume
the total volume of the gas

V =

∫
dx · dy · dz,
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and the total energy

E =
m

2

∑
(ẋ2 + ẏ2 + ż2)fσ (18)

as given, then the condition:
δS = 0

must hold for the state of equilibrium, or, in accordance with (17):∑
(log f + 1) · δf · σ = 0, (19)

wherein the variation δf refers to an arbitrary change in the law of distribution, com-
patible with the given values of N , V and E.

Now we have, on account of the constancy of the total number of molecules N , in
accordance with (14): ∑

δf · σ = 0

and, on account of the constancy of the total energy, in accordance with (18):∑
(ẋ2 + ẏ2 + ż2) · δf · σ = 0.

Consequently, for the fulfillment of condition (19) for all permissible values of δf , it is
sufficient and necessary that

log f + β(ẋ2 + ẏ2 + ż2) = const,

or:
f = αe−β(ẋ2+ẏ2+ż2),

wherein α and β are constants. In the state of equilibrium, therefore, the space dis-
tribution of molecules is uniform, i. e., independent of x, y, z, and the distribution of
velocities is the well known Maxwellian distribution.

The values of the constants α and β are to be found from those of N , V and E. For
the substitution of the value found for f in (14) leads to:

N = V α

(
π

β

)3
2

,

and the substitution of f in (18) leads to:

E = 3
4
V m

α

β

(
π

β

)3
2

.

From these equations it follows that:

α =
N

V
·
(

3mN

4πE

)3
2

, β =
3mN

4E
,

and hence finally, in accordance with (17), the expression for the entropy S of the gas
in a state of equilibrium with given values for N , V and E is:

S = const + kN(3
2

logE + log V ). (20)
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The additive constant contains terms in N and m, but not in E and V .
The determination of the entropy here carried out permits now the specification

directly of the complete thermodynamic behavior of the gas, viz., of the equation of
state, and of the values of the specific heats. From the general thermodynamic definition
of entropy:

dS =
dE + pdV

T

are obtained the partial differential quotients of S with regard to E and V respectively:(
∂S

∂E

)
V

=
1

T
,

(
∂S

∂V

)
E

=
p

T
.

Consequently, with the aid of (20):(
∂S

∂E

)
V

=
3

2

kN

E
=

1

T
, (21)

and (
∂S

∂V

)
E

=
kN

V
=
p

T
. (22)

The second of these equations:

p =
kNT

V

contains the laws of Boyle, Gay Lussac and Avogadro, the latter because the pressure
depends only upon the number N , and not upon the constitution of the molecules.
Writing it in the ordinary form:

p =
RnT

V
,

where n denotes the number of gram molecules or mols of the gas, referred to O2 = 32g,
and R the absolute gas constant:

R = 8.315 · 107 erg

deg
,

we obtain by comparison:

k =
Rn

N
. (23)

If we denote the ratio of the mol number to the molecular number by ω, or, what is the
same thing, the ratio of the molecular mass to the mol mass:

ω =
n

N
,

and hence:
k = ωR. (24)

From this, if ω is given, we can calculate the universal constant k, and conversely.
The equation (21) gives:

E = 3
2
kNT. (25)
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Now since the energy of an ideal gas is given by:

E = AncvT,

wherein cv denotes in calories the heat capacity at constant volume of a mol, A the
mechanical equivalent of heat:

A = 4.19 · 107 erg

cal
,

it follows that:

cv =
3kN

2An
,

and, having regard to (23), we obtain:

cv =
3

2

R

A
= 3.0, (26)

the mol heat in calories of any monatomic gas at constant volume.
For the mol heat cp at constant pressure we have from the first law of thermody-

namics

cp − cv =
R

A
,

and, therefore, having regard to (26):

cp = 5,
cp
cv

= 5
3
,

a known result for monatomic gases.
The mean kinetic energy L of a molecule is obtained from (25):

L =
E

N
= 3

2
kT. (27)

You notice that we have derived all these relations through the identification of the
mechanical with the thermodynamic expression for the entropy, and from this you
recognize the fruitfulness of the method here proposed.

But a method can first demonstrate fully its usefulness when we utilize it, not only
to derive laws which are already known, but when we apply it in domains for whose
investigation there at present exist no other methods. In this connection its application
affords various possibilities. Take the case of a monatomic gas which is not sufficiently
attenuated to have the properties of the ideal state; there are here, as pointed out by
J. D. van der Waals, two things to consider: (1) the finite size of the atoms, (2) the
forces which act among the atoms. Taking account of these involves a change in the
value of the probability and in the energy of the gas as well, and, so far as can now
be shown, the corresponding change in the conditions for thermodynamic equilibrium
leads to an equation of state which agrees with that of van der Waals. Certainly there
is here a rich field for further investigations, of greater promise when experimental tests
of the equation of state exist in larger number.

Another important application of the theory has to do with heat radiation, with
which we shall be occupied the coming week. We shall proceed then in a similar way
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as here, and shall be able from the expression for the entropy of radiation to derive the
thermodynamic properties of radiant heat.

Today we will refer briefly to the treatment of polyatomic gases. I have previ-
ously, upon good grounds, limited the treatment to monatomic molecules; for up to the
present real difficulties appear to stand in the way of a generalization, from the prin-
ciples employed by us, to include polyatomic molecules; in fact, if we wish to be quite
frank, we must say that a satisfactory mechanical theory of polyatomic gases has not
yet been found. Consequently, at present we do not know to what place in the system
of theoretical physics to assign the processes within a molecule—the intra-molecular
processes. We are obviously confronted by puzzling problems. A noteworthy and much
discussed beginning was, it is true, made by Boltzmann, who introduced the most plau-
sible assumption that for intra-molecular processes simple laws of the same kind hold
as for the motion of the molecules themselves, i. e., the general equations of dynamics.
It is easy then, in fact, to proceed to the proof that for a monatomic gas the molecular
heat cv must be greater than 3 and that consequently, since the difference cp − cv is
always equal to 2, the ratio is

cp
cv

=
cv + 2

cv
< 5

3
.

This conclusion is completely confirmed by experience. But this in itself does not
confirm the assumption of Boltzmann; for, indeed, the same conclusion is reached very
simply from the assumption that there exists intra-molecular energy which increases
with the temperature. For then the molecular heat of a polyatomic gas must be greater
by a corresponding amount than that of a monatomic gas.

Nevertheless, up to this point the Boltzmann theory never leads to contradiction
with experience. But so soon as one seeks to draw special conclusions concerning
the magnitude of the specific heats hazardous difficulties arise; I will refer to only
one of them. If one assumes the Hamiltonian equations of mechanics as applicable to
intra-molecular motions, he arrives of necessity at the law of “uniform distribution of
energy,” which asserts that under certain conditions, not essential to consider here, in a
thermodynamic state of equilibrium the total energy of the gas is distributed uniformly
among all the individual energy phases corresponding to the independent variables
of state, or, as one may briefly say; the same amount of energy is associated with
every independent variable of state. Accordingly, the mean energy of motion of the
molecules 1

2
kT , corresponding to a given direction in space, is the same as for any other

direction, and, moreover, the same for all the different kinds of molecules, and ions; also
for all suspended particles (dust) in the gas, of whatever size, and, furthermore, the
same for all kinds of motions of the constituents of a molecule relative to its centroid.
If one now reflects that a molecule commonly contains, so far as we know, quite a large
number of different freely moving constituents, certainly, that a normal molecule of
a monatomic gas, e. g., mercury, possesses numerous freely moving electrons, then, in
accordance with the law of uniform energy distribution, the intra-molecular energy must
constitute a much larger fraction of the whole specific heat of the gas, and therefore
cp/cv must turn out much smaller, than is consistent with the measured values. Thus,
e. g., for an atom of mercury, in accordance with the measured value of cp/cv = 5/3,
no part whatever of the heat added may be assigned to the intra-molecular energy.
Boltzmann and others, in order to eliminate this contradiction, have fixed upon the
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possibility that, within the time of observation of the specific heats, the vibrations of
the constituents (of a molecule) do not change appreciably with respect to one another,
and come later with their progressive motion so slowly into heat equilibrium that this
process is no longer capable of detection through observation. Up to now no such delay
in the establishment of a state of equilibrium has been observed. Perhaps it would be
productive of results if in delicate measurements special attention were paid the question
as to whether observations which take a longer time lead to a greater value of the mol-
heat, or, what comes to the same thing, a smaller value of cp/cv, than observations
lasting a shorter time.

If one has been made mistrustful through these considerations concerning the ap-
plicability of the law of uniform energy distribution to intra-molecular processes, the
mistrust is accentuated upon the inclusion of the laws of heat radiation. I shall make
mention of this in a later lecture.

When we pass from stable atoms to the unstable atoms of radioactive substances,
the principles following from the kinetic gas theory lose their validity completely. For
the striking failure of all attempts to find any influence of temperature upon radioactive
phenomena shows us that an application here of the law of uniform energy distribution
is certainly not warranted. It will, therefore, be safest meanwhile to offer no definite
conjectures with regard to the nature and the laws of these noteworthy phenomena,
and to leave this field for further development to experimental research alone, which, I
may say, with every day throws new light upon the subject.
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FIFTH LECTURE.

Heat Radiation. Electrodynamic Theory.

Last week I endeavored to point out that we find in the atomic theory a complete
explanation for the whole content of the two laws of thermodynamics, if we, with
Boltzmann, define the entropy by the probability, and I have further shown, in the
example of an ideal monatomic gas, how the calculation of the probability, without any
additional special hypothesis, enables us not only to find the properties of gases known
from thermodynamics, but also to reach conclusions which lie essentially beyond those of
pure thermodynamics. Thus, e. g., the law of Avogadro in pure thermodynamics is only
a definition, while in the kinetic theory it is a necessary consequence; furthermore, the
value of cv, the mol-heat of a gas, is completely undetermined by pure thermodynamics,
but from the kinetic theory it is of equal magnitude for all monatomic gases and, in
fact, equal to 3, corresponding to our experimental knowledge. Today and tomorrow we
shall be occupied with the application of the theory to radiant heat, and it will appear
that we reach in this apparently quite isolated domain conclusions which a thorough
test shows are compatible with experience. Naturally, we take as a basis the electro-
magnetic theory of heat radiation, which regards the rays as electro-magnetic waves of
the same kind as light rays.

We shall utilize the time today in developing in bold outline the important conse-
quences which follow from the electro-magnetic theory for the characteristic quantities
of heat radiation, and tomorrow seek to answer, through the calculation of the entropy,
the question concerning the dependence of these quantities upon the temperature, as
was done last week for ideal gases. Above all, we are concerned here with the deter-
mination of those quantities which at any place in a medium traversed by heat rays
determine the state of the radiant heat. The state of radiation at a given place will not
be represented by a vector which is determined by three components; for the energy
flowing in a given direction is quite independent of that flowing in any other direction.
In order to know the state of radiation, we must be able to specify, moreover, the energy
which in the time dt flows through a surface element dσ for every direction in space.
This will be proportional to the magnitude of dσ, to the time dt, and to the cosine
of the angle ϑ which the direction considered makes with the normal to dσ. But the
quantity to be multiplied by dσ · dt · cosϑ will not be a finite quantity; for since the
radiation through any point of dσ passes in all directions, therefore the quantity will
also depend upon the magnitude of the solid angle dΩ, which we shall assume as the
same for all points of dσ. In this manner we obtain for the energy which in the time dt
flows through the surface element dσ in the direction of the elementary cone dΩ, the
expression:

Kdσdt · cosϑ · dΩ. (28)

K is a positive function of place, of time and of direction, and is for unpolarized light
of the following form:

K = 2

∫ ∞
0

Kνdν (29)

where ν denotes the frequency of a color of wave length λ and whose velocity of prop-
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agation is q:

ν =
q

λ
,

and Kν denotes the corresponding intensity of spectral radiation of the plane polarized
light.

From the value of K is to be found the space density of radiation ε, i. e., the energy
of radiation contained in unit volume. The point 0 in question forms the centre of a
sphere whose radius r we take so small that in the distance r no appreciable absorption
of radiation takes place. Then each element dσ of the surface of the sphere furnishes, by
virtue of the radiation traversing the same, the following contribution to the radiation
density at 0:

dσ · dt ·K · dΩ

r2dΩ · qdt
=
dσ ·K
r2q

.

For the radiation cone of solid angle dΩ proceeding from a point of dσ in the direction
toward 0 has at the distance r from dσ the cross-section r2dΩ and the energy passing
in the time dt through this cross-section distributes itself along the distance qdt. By
integration over all of the surface elements dσ we obtain the total space density of
radiation at 0:

ε =

∫
dσK

r2q
=

1

q

∫
KdΩ,

wherein dΩ denotes the solid angle of an elementary cone whose vertex is 0. For uniform
radiation we obtain:

ε =
4πK

q
=

8π

q
·
∫ ∞

0

Kνdν. (30)

The production of radiant heat is a consequence of the act of emission, and its
destruction is the result of absorption. Both processes, emission and absorption, have
their origin only in material particles, atoms or electrons, not at the geometrical bound-
ing surface; although one frequently says, for the sake of brevity, that a surface element
emits or absorbs. In reality a surface element of a body is a place of entrance for the
radiation falling upon the body from without and which is to be absorbed; or a place
of exit for the radiation emitted from within the body and passing through the surface
in the outward direction. The capacity for emission and the capacity for absorption of
an element of a body depend only upon its own condition and not upon that of the
surrounding elements. If, therefore, as we shall assume in what follows, the state of the
body varies only with the temperature, then the capacity for emission and the capacity
for absorption of the body will also vary only with the temperature. The dependence
upon the temperature can of course be different for each wave length.

We shall now introduce that result following from the second law of thermodynamics
which will serve us as a basis in all subsequent considerations: “a system of bodies at rest
of arbitrary nature, form and position, which is surrounded by a fixed shell impervious to
heat, passes in the course of time from an arbitrarily chosen initial state to a permanent
state in which the temperature of all bodies of the system is the same.” This is the
thermodynamic state of equilibrium in which the entropy of the system, among all those
values which it may assume compatible with the total energy specified by the initial
conditions, has a maximum value. Let us now apply this law to a single homogeneous
isotropic medium which is of great extent in all directions of space and which, as in
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all cases subsequently considered, is surrounded by a fixed shell, perfectly reflecting as
regards heat rays. The medium possesses for each frequency ν of the heat rays a finite
capacity for emission and a finite capacity for absorption. Let us consider, now, such
regions of the medium as are very far removed from the surface. Here the influence of
the surface will be in any case vanishingly small, because no rays from the surface reach
these regions, and on account of the homogeneity and isotropy of the medium we must
conclude that the heat radiation is in thermodynamic equilibrium everywhere and has
the same properties in all directions, so that Kν , the specific intensity of radiation of a
plane polarized ray, is independent of the frequency ν, of the azimuth of polarization, of
the direction of the ray, and of location. Thus, there will correspond to each diverging
bundle of rays in an elementary cone dΩ, proceeding from a surface element dσ, an
exactly equal bundle oppositely directed, within the same elemental cone converging
toward the surface element. This law retains its validity, as a simple consideration
shows, right up to the surface of the medium. For in thermodynamic equilibrium
each ray must possess exactly the same intensity as that of the directly opposite ray,
otherwise, more energy would flow in one direction than in the opposite direction. Let
us fix our attention upon a ray proceeding inwards from the surface, this must have
the same intensity as that of the directly opposite ray coming from within, and from
this it follows immediately that the state of radiation of the medium at all points on
the surface is the same as that within. The nature of the bounding surface and the
spacial extent of the medium are immaterial, and in a stationary state of radiation Kν
is completely determined by the nature of the medium for each temperature.

This law suffers a modification, however, in the special case that the medium is
absolutely diathermanous for a definite frequency ν. It is then clear that the capacity
for absorption and also that for emission must be zero, because otherwise no stationary
state of radiation could exist, i. e., a medium emits no color which it does not absorb.
But equilibrium can then obviously exist for every intensity of radiation of the frequency
considered, i. e., Kν is now undetermined and cannot be found without knowledge of the
initial conditions. An important example of this is furnished by an absolute vacuum,
which is diathermanous for all frequencies. In a complete vacuum thermodynamic
equilibrium can therefore exist for each arbitrary intensity of radiation and for each
frequency, i. e., for each arbitrary distribution of the spectral energy. From a general
thermodynamic point of view this indeterminateness of the properties of thermodynamic
states of equilibrium is explained through the presence of numerous different relative
maxima of the entropy, as in the case of a vapor which is in a state of supersaturation.
But among all the different maxima there is a special maximum, the absolute, which
indicates stable equilibrium. In fact, we shall see that in a diathermanous medium for
each temperature there exists a quite definite intensity of radiation, which is designated
as the stable intensity of radiation of the frequency ν considered. But for the present
we shall assume for all frequencies a finite capacity for absorption and for emission.

We consider now two homogeneous isotropic media in thermodynamic equilibrium
separated from each other by a plane surface. Since the equilibrium will not be disturbed
if one imagines for the moment the surface of separation between the two substances
to be replaced by a surface quite non-transparent to heat radiation, all of the foregoing
laws hold for each of the two substances individually. Let the specific intensity of
radiation of frequency ν, polarized in any arbitrary plane within the first substance
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(the upper in Fig. 1)4, be Kν and that within the second substance Kν
′ (we shall in

general designate with a dash those quantities which refer to the second substance).
Both quantities Kν and Kν

′, besides depending upon the temperature and the frequency,
depend only upon the nature of the two substances, and, in fact, these values of the
intensity of radiation hold quite up to the boundary surface between the substances,
and are therefore independent of the properties of this surface.

Each ray from the first medium is split into two rays at the boundary surface: the
reflected and the transmitted. The directions of these two rays vary according to the
angle of incidence and the color of the incident ray, and, in addition, the intensity varies
according to its polarization. If we denote by ρ (the reflection coefficient) the amount of
the reflected energy of radiation and consequently by 1− ρ the amount of transmitted
energy with respect to the incident energy, then ρ depends upon the angle of incidence,
upon the frequency and upon the polarization of the incident ray. Similar remarks hold
for ρ′, the reflection coefficient for a ray from the second medium, upon meeting the
boundary surface.

Now the energy of a monochromatic plane polarized ray of frequency ν proceeding
from an element dσ of the boundary surface within the elementary cone dΩ in a direction

4From my lectures upon the theory of heat radiation (Leipzig, J. A. Barth), wherein are to be found
the details of the above somewhat abbreviated calculations.
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toward the first medium (see the feathered arrow at the left in Fig. 1) is for the time dt,
in accordance with (28) and (29):

dt · dσ · cosϑ · dΩ · Kνdν, (31)

where
dΩ = sinϑdϑdϕ. (32)

This energy is furnished by the two rays which, approaching the surface from the first
and the second medium respectively, are reflected and transmitted respectively at the
surface element dσ in the same direction. (See the unfeathered arrows. The surface
element dσ is indicated only by the point 0.) The first ray proceeds in accordance with
the law of reflection within the symmetrically drawn elementary cone dΩ: the second
approaches the surface within the elementary cone

dΩ′ = sinϑ′dϑ′dϕ′, (33)

where, in accordance with the law of refraction,

ϕ′ = ϕ and
sinϑ

sinϑ′
=
q

q′
. (34)

We now assume that the ray is either polarized in the plane of incidence or perpendicular
to this plane, and likewise for the two radiations out of whose energies it is composed.
The radiation coming from the first medium and reflected from dσ contributes the
energy:

ρ · dt · dσ cosϑ · dΩ · Kνdν, (35)

and the radiation coming from the second medium and transmitted through dσ con-
tributes the energy:

(1− ρ′) · dt · dσ cosϑ′ · dΩ′ · Kν ′dν. (36)

The quantities dt, dσ, ν, and dν are here written without the accent, since they have
the same values in both media.

Adding the expressions (35) and (36) and placing the sum equal to the expres-
sion (31), we obtain:

ρ cosϑdΩKν + (1− ρ′) cosϑ′dΩ′Kν
′ = cosϑdΩKν .

Now, in accordance with (34):

cosϑdϑ

q
=

cosϑ′dϑ′

q′
,

and further, taking note of (32) and (33):

dΩ′ cosϑ′ = dΩ cosϑ · q
′2

q2
,

and it follows that:

ρKν + (1− ρ′)q
′2

q2
Kν
′ = Kν
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or:
Kν
Kν
′ ·
q2

q′2
=

1− ρ′

1− ρ
.

In the last equation the quantity on the left is independent of the angle of incidence ϑ
and of the kind of polarization, consequently the quantity upon the right side must also
be independent of these quantities. If one knows the value of these quantities for a
single angle of incidence and for a given kind of polarization, then this value is valid
for all angles of incidence and for all polarizations. Now, in the particular case that
the rays are polarized at right angles to the plane of incidence and meet the bounding
surface at the angle of polarization,

ρ = 0 and ρ′ = 0.

Then the expression on the right will be equal to 1, and therefore it is in general equal
to 1, and we have always:

ρ = ρ′, q2Kν = q′2Kν
′. (37)

The first of these two relations, which asserts that the coefficient of reflection is the same
for both sides of the boundary surface, constitutes the special expression of a general
reciprocal law, first announced by Helmholz, whereby the loss of intensity which a ray of
given color and polarization suffers on its path through any medium in consequence of
reflection, refraction, absorption, and dispersion is exactly equal to the loss of intensity
which a ray of corresponding intensity, color and polarization suffers in passing over the
directly opposite path. It follows immediately from this that the radiation meeting a
boundary surface between two media is transmitted or reflected equally well from both
sides, for every color, direction and polarization.

The second relation, (37), brings into connection the radiation intensities originating
in both substances. It asserts that in thermodynamic equilibrium the specific intensities
of radiation of a definite frequency in both media vary inversely as the square of the
velocities of propagation, or directly as the squares of the refractive indices. We may
therefore write

q2Kν = F (ν, T ),

wherein F denotes a universal function depending only upon ν and T , the discovery of
which is one of the chief problems of the theory.

Let us fix our attention again on the case of a diathermanous medium. We saw
above that in a medium surrounded by a non-transparent shell which for a given color
is diathermanous equilibrium can exist for any given intensity of radiation of this color.
But it follows from the second law that, among all the intensities of radiation, a definite
one, namely, that corresponding to the absolute maximum of the total entropy of the
system, must exist, which characterizes the absolutely stable equilibrium of radiation.
We now see that this indeterminateness is eliminated by the last equation, which asserts
that in thermodynamic equilibrium the product q2Kν is a universal function. For it re-
sults immediately therefrom that there is a definite value of Kν for every diathermanous
medium which is thus differentiated from all other values. The physical meaning of this
value is derived directly from a consideration of the way in which this equation was
derived: it is that intensity of radiation which exists in the diathermanous medium
when it is in thermodynamic equilibrium while in contact with a given absorbing and
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emitting medium. The volume and the form of the second medium is immaterial; in
particular, the volume may be taken arbitrarily small.

For a vacuum, the most diathermanous of all media, in which the velocity of prop-
agation q = c is the same for all rays, we can therefore express the following law: The
quantity

Kν =
1

c2
F (ν, T ) (38)

denotes that intensity of radiation which exists in any complete vacuum when it is in
a stationary state as regards exchange of radiation with any absorbing and emitting
substance, whose amount may be arbitrarily small. This quantity Kν regarded as a
function of ν gives the so-called normal energy spectrum.

Let us consider, therefore, a vacuum surrounded by given emitting and absorbing
bodies of uniform temperature. Then, in the course of time, there is established therein
a normal energy radiation Kν corresponding to this temperature. If now ρν be the
reflection coefficient of a wall for the frequency ν, then of the radiation Kν falling upon
the wall, the part ρνKν will be reflected. On the other hand, if we designate by Eν the
emission coefficient of the wall for the same frequency ν, the total radiation proceeding
from the wall will be:

ρνKν + Eν = Kν ,

since each bundle of rays possesses in a stationary state the intensity Kν . From this it
follows that:

Kν =
Eν

1− ρν
, (39)

i. e., the ratio of the emission coefficient Eν to the capacity for absorption (1 − ρν) of
a given substance is the same for all substances and equal to the normal intensity of
radiation for each frequency (Kirchoff). For the special case that ρν is equal to 0, i. e.,
that the wall shall be perfectly black, we have:

Kν = Eν ,

that is, the normal intensity of radiation is exactly equal to the emission coefficient of
a black body. Therefore the normal radiation is also called “black radiation.” Again,
for any given body, in accordance with (39), we have:

Eν < Kν ,

i. e., the emission coefficient of a body in general is smaller than that of a black body.
Black radiation, thanks to W. Wien and O. Lummer, has been made possible of mea-
surement, through a small hole bored in the wall bounding the space considered.

We proceed now to the treatment of the problem of determining the specific inten-
sity Kν of black radiation in a vacuum, as regards its dependence upon the frequency ν
and the temperature T . In the treatment of this problem it will be necessary to go fur-
ther than we have previously done into those processes which condition the production
and destruction of heat rays; that is, into the question regarding the act of emission and
that of absorption. On account of the complicated nature of these processes and the
difficulty of bringing some of the details into connection with experience, it is certainly
quite out of the question to obtain in this manner any reliable results if the following
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law cannot be utilized as a dependable guide in this domain: a vacuum surrounded by
reflecting walls in which arbitrary emitting and absorbing bodies are distributed in any
given arrangement assumes in the course of time the stationary state of black radiation,
which is completely determined by a single parameter, the temperature, and which, in
particular, does not depend upon the number, the properties and the arrangement of
the bodies. In the investigation of the properties of the state of black radiation the na-
ture of the bodies which are supposed to be in the vacuum is therefore quite immaterial,
and it is certainly immaterial whether such bodies actually exist anywhere in nature,
so long as their existence and their properties are compatible throughout with the laws
of electrodynamics and of thermodynamics. As soon as it is possible to associate with
any given special kind and arrangement of emitting and absorbing bodies a state of
radiation in the surrounding vacuum which is characterized by absolute stability, then
this state can be no other than that of black radiation. Making use of the freedom
furnished by this law, we choose among all the emitting and absorbing systems conceiv-
able, the most simple, namely, a single oscillator at rest, consisting of two poles charged
with equal quantities of electricity of opposite sign which are movable relative to each
other in a fixed straight line, the axis of the oscillator. The state of the oscillator is
completely determined by its moment, f(t); i. e., by the product of the electric charge
of the pole on the positive side of the axis into the distance between the poles, and by
its differential quotient with regard to the time:

df(t)

dt
= ḟ(t).

The energy of the oscillator is of the following simple form:

U = 1
2
Kf 2 + 1

2
Lḟ 2, (40)

wherein K and L denote positive constants which depend upon the nature of the oscil-
lator in some manner into which we need not go further at this time.

If, in the vibrations of the oscillator, the energy U remain absolutely constant, we
should have: dU = 0 or:

Kf(t) + Lf̈(t) = 0,

and from this there results, as a general solution of the differential equation, a pure
periodic vibration:

f = C cos(2πν0t− ϑ),

wherein C and ϑ denote the integration constants and ν0 the number of vibrations per
unit of time:

ν0 =
1

2π

√
K

L
. (41)

Such an oscillator vibrating periodically with constant energy would neither be influ-
enced by the electromagnetic field surrounding it, nor would it exert any external actions
due to radiation. It could therefore have no sort of influence on the heat radiation in
the surrounding vacuum.

In accordance with the theory of Maxwell, the energy of vibration U of the oscillator
by no means remains constant in general, but an oscillator by virtue of its vibrations
sends out spherical waves in all directions into the surrounding field and, in accordance
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with the principle of conservation of energy, if no actions from without are exerted upon
the oscillator, there must necessarily be a loss in the energy of vibration and, therefore,
a damping of the amplitude of vibration is involved. In order to find the amount of this
damping we calculate the quantity of energy which flows out through a spherical surface
with the oscillator at the center, in accordance with the law of Poynting. However, we
may not place the energy flowing outwards in accordance with this law through the
spherical surface in an infinitely small interval of time dt equal to the energy radiated
in the same time interval from the oscillator. For, in general, the electromagnetic
energy does not always flow in the outward direction, but flows alternately outwards
and inwards, and we should obtain in this manner for the quantity of the radiation
outwards, values which are alternately positive and negative, and which also depend
essentially upon the radius of the supposed sphere in such manner that they increase
toward infinity with decreasing radius—which is opposed to the fundamental conception
of radiated energy. This energy will, moreover, be only found independent of the radius
of the sphere when we calculate the total amount of energy flowing outwards through
the surface of the sphere, not for the time element dt, but for a sufficiently large time.
If the vibrations are purely periodic, we may choose for the time a period; if this is not
the case, which for the sake of generality we must here assume, it is not possible to
specify a priori any more general criterion for the least possible necessary magnitude
of the time than that which makes the energy radiated essentially independent of the
radius of the supposed sphere.

In this way we succeed in finding for the energy emitted from the oscillator in the
time from t to t+ T the following expression:

2

3c3

∫ t+T

t

f̈ 2(t)dt.

If now, the oscillator be in an electromagnetic field which has the electric component Ez
at the oscillator in the direction of its axis, then the energy absorbed by the oscillator
in the same time is: ∫ t+T

t

Ezḟ · dt.

Hence, the principle of conservation of energy is expressed in the following form:∫ t+T

t

(
dU

dt
+

2

3c3
f̈ 2 − Ezḟ

)
dt = 0.

This equation, together with the assumption that the constant

4π2ν0

3c3L
= σ (42)

is a small number, leads to the following linear differential equation for the vibrations
of the oscillator:

Kf + Lf̈ − 2

3c3

...
f = Ez. (43)

In accordance with what precedes, in so far as the oscillator is excited into vibrations
by an external field Ez, one may designate it as a resonator which possesses the natural
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period ν0 and the small logarithmic decrement σ. The same equation may be obtained
from the electron theory, but I have considered it an advantage to derive it in a manner
independent of any hypothesis concerning the nature of the resonator.

Now, let the resonator be in a vacuum filled with stationary black radiation of
specific intensity Kν . How, then, does the mean energy U of the resonator in a state
of stationary vibration depend upon the specific intensity of radiation Kν0 with the
natural period ν0 of the corresponding color? It is this question which we have still to
consider today. Its answer will be found by expressing on the one hand the energy of
the resonator U and on the other hand the intensity of radiation Kν0 by means of the
component Ez of the electric field exciting the resonator. Now however complicated this
quantity may be, it is capable of development in any case for a very large time interval,
from t = 0 to t = T, in the Fourier’s series:

Ez =
n=∞∑
n=1

Cn cos

(
2πnt

T
− ϑn

)
, (44)

and for this same time interval T the moment of the resonator in the form of a Fourier’s
series may be calculated as a function of t from the linear differential equation (43).
The initial condition of the resonator may be neglected if we only consider such times t
as are sufficiently far removed from the origin of time t = 0.

If it be now recalled that in a stationary state of vibration the mean energy U of
the resonator is given, in accordance with (40), (41) and (42), by:

U = Kf̄ 2 =
16π4ν0

3

3σc3
f̄ 2,

it appears after substitution of the value of f obtained from the differential equation (43)
that:

U =
3c3

64π2ν0
2
TC̄n0

2, (45)

wherein C̄n0
2 denotes the mean value of Cn for all the series of numbers n which lie in

the neighborhood of the value ν0T, i. e., for which ν0T is approximately = 1.
Now let us consider on the other hand the intensity of black radiation, and for this

purpose proceed from the space density of the total radiation. In accordance with (30),
this is:

ε =
8π

c

∫ ∞
0

Kνdν =
1

8π
(Ēx

2 + Ēy
2 + Ēz

2 + H̄x
2 + H̄y

2 + H̄z
2), (46)

and therefore, since the radiation is isotropic, in accordance with (44):

8π

c

∫ ∞
0

Kνdν =
3

4π
Ēz

2 =
3

8π

n=∞∑
n=1

Cn
2.

If we write ∆n/T on the left instead of dν, where ∆n is a large number, we get:

8π

c

n=∞∑
n=1

Kv
∆n

T
=

3

8π

n=∞∑
n=1

Cn
2,
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and obtain then by “spectral” division of this equation:

8π

c
Kν0

∆n

T
=

3

8π

n0+(∆n/2)∑
n0−(∆n/2)

Cn
2,

and, if we introduce again the mean value

1

∆n
·
n0+(∆n/2)∑
n0−(∆n/2)

Cn
2 = C̄n0

2,

we then get:

Kν0 =
3cT

64π2
· C̄n0.

By comparison with (45) the relation sought is now found:

Kν0 =
ν0

2

c2
U, (47)

which is striking on account of its simplicity and, in particular, because it is quite
independent of the damping constant σ of the resonator.

This relation, found in a purely electrodynamic manner, between the spectral inten-
sity of black radiation and the energy of a vibrating resonator will furnish us in the next
lecture, with the aid of thermodynamic considerations, the necessary means of attack
in deriving the temperature of black radiation together with the distribution of energy
in the normal spectrum.
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SIXTH LECTURE.

Heat Radiation. Statistical Theory.

Following the preparatory considerations of the last lecture we shall treat today the
problem which we have come to recognize as one of the most important in the theory of
heat radiation: the establishment of that universal function which governs the energy
distribution in the normal spectrum. The means for the solution of this problem will
be furnished us through the calculation of the entropy S of a resonator placed in a
vacuum filled with black radiation and thereby excited into stationary vibrations. Its
energy U is then connected with the corresponding specific intensity Kν and its natural
frequency ν in the radiation of the surrounding field through equation (47):

Kν =
ν2

c2
U. (48)

When S is found as a function of U , the temperature T of the resonator and that of
the surrounding radiation will be given by:

dS

dU
=

1

T
, (49)

and by elimination of U from the last two equations, we then find the relationship
among Kν , T and ν.

In order to find the entropy S of the resonator we will utilize the general connection
between entropy and probability, which we have extensively discussed in the previous
lectures, and inquire then as to the existing probability that the vibrating resonator
possesses the energy U . In accordance with what we have seen in connection with the
elucidation of the second law through atomistic ideas, the second law is only applicable
to a physical system when we consider the quantities which determine the state of the
system as mean values of numerous disordered individual values, and the probability
of a state is then equal to the number of the numerous, a priori equally probable,
complexions which make possible the realization of the state. Accordingly, we have
to consider the energy U of a resonator placed in a stationary field of black radiation
as a constant mean value of many disordered independent individual values, and this
procedure agrees with the fact that every measurement of the intensity of heat radiation
is extended over an enormous number of vibration periods. The entropy of a resonator
is then to be calculated from the existing probability that the energy of the radiator
possesses a definite mean value U within a certain time interval.

In order to find this probability, we inquire next as to the existing probability that
the resonator at any fixed time possesses a given energy, or in other words, that that
point (the state point) which through its coordinates indicates the state of the resonator
falls in a given “state domain.” At the conclusion of the third lecture (p. 43) we
saw in general that this probability is simply measured through the magnitude of the
corresponding state domain: ∫

dϕ · dψ,

in case one employs as coordinates of state the general coordinate ϕ and the corre-
sponding momentum ψ. Now in general, the energy of the resonator, in accordance
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with (40), is:
U = 1

2
Kf 2 + 1

2
Lḟ 2.

If we choose f as the general coordinate ϕ and put, therefore, ϕ = f , then the corre-
sponding impulse ψ is equal

∂U

∂ḟ
= Lḟ,

and the energy U expressed as a function of ϕ and ψ is:

U = 1
2
Kϕ2 +

1

2

ψ2

L
.

If now we desire to find the existing probability that the energy of a resonator shall
lie between U and U + ∆U , we have to calculate the magnitude of that state domain
in the (ϕ, ψ)-plane which is bounded by the curves U = const. and U + ∆U = const.
These two curves are similar and similarly placed ellipses and the portion of surface
bounded by them is equal to the difference of the areas of the two ellipses. The areas
are respectively U/ν and (U+∆U)/ν; consequently, the magnitude sought for the state
domain is: ∆U/ν. Let us now consider the whole state plane so divided into elementary
portions by a large number of ellipses, such that the annular areas between consecutive
ellipses are equal to each other; i. e., so that:

∆U

ν
= const = h.

We thus obtain those portions ∆U of the energy which correspond to equal probabilities
and which are therefore to be designated as the energy elements:

ε = ∆U = hν. (50)

If the determination of the elementary domains is effected in a manner quite similar
to that employed in the kinetic gas theory, there exist, with respect to the relationships
there found, very notable differences. In the first place, the state of the physical system
considered here, the resonator, does not depend as there upon the coordinates and
the velocities, but upon the energy only, and this circumstance necessitates that the
entropy of a state depend, not upon the distribution of the state quantities ϕ and ψ,
but only upon the energy U . A further difference consists in this, that we have to do in
the case of molecules with spacial mean values, but in the case of radiation with mean
values as regards time. But this distinction may be disregarded when we reflect that
the mean time value of the energy U of a given resonator is obviously identical with the
mean space value at a given instant of time of a great number N of similar resonators
distributed in the same stationary field of radiation. Of course these resonators must
be placed sufficiently far apart in order not directly to influence one another. Then the
total energy of all the resonators:

UN = NU (51)

is quite irregularly distributed among all the individual resonators, and we have referred
back the disorder as regards time to a disorder as regards space.

We are now concerned with the probability W of the state determined by the en-
ergy UN of the N resonators placed in the same stationary field of radiation; i. e., with
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the number of individual arrangements or complexions which correspond to the distri-
bution of energy UN among the N resonators. With this in view, we subdivide the
given total energy UN into its elements ε so that:

UN = Pε. (52)

These P energy elements are to be distributed in every possible manner among the
N resonators. Let us consider, then, the N resonators to be numbered and the figures
written beside one another in a series, and in such manner that the number of times
each figure appears is equal to the number of energy elements which fall upon the
corresponding resonator. Then we obtain through such a number series a representation
of a fixed complexion, in which with each individual resonator there is associated a
definite energy. For example, if there are N = 4 resonators and P = 6 energy elements
present, then one of the possible complexions is represented by the number series

1 1 3 3 3 4

which asserts that the first resonator contains two, the second 0, the third 3, and the
fourth 1 energy element. The totality of numbers in the series is 6, equal to the number
of the energy elements present. The arrangement of figures in the series is immaterial
for any complexion, since the mere interchange of figures does not change the energy of a
given resonator. The number of all the possible different complexions is therefore equal
to the number of possible “combinations with repetition” of 4 elements with 6 classes:

W =
(4 + 6− 1)!

(4− 1)! 6!
=

9!

3! 6!
= 84,

or, in our general case the probability sought is:

W =
(N + P − 1)!

(N − 1)! P !
.

We obtain, therefore, for the entropy SN of the resonator system, in accordance with
equation (12), since N and P are large numbers,

SN = k log
(N + P )!

N ! P !

and with the aid of Sterling’s formula (16):

SN = k{(N + P ) log(N + P )−N logN − P logP}.

If, in accordance with (52), we now write UN/ε for P , NU for UN in accordance
with (51), and hν for ε, in accordance with (50), we obtain, after an easy transfor-
mation, for the mean entropy of a single resonator:

SN
N

= S = k

{(
1 +

U

hν

)
log

(
1 +

U

hν

)
− U

hν
log

U

hν

}
as the solution of the problem in hand.
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We will now introduce the temperature T of the resonator, and will express through
T the energy U of the resonator and also the intensity Kν of the heat radiation re-
lated to it through a stationary state of energy exchange. For this purpose we utilize
equation (49) and obtain then for the energy of the resonator:

U =
hν

ehν/kT − 1
.

It is to be observed that we have not here to do with a uniform distribution of energy
(cf. p. 50) among the various resonators.

For the specific intensity of the monochromatic plane polarized ray of frequency ν,
we have, in accordance with (48):

Kν =
hν3

c2
· 1

ehν/kT − 1
. (53)

This expression furnishes for each temperature T the energy distribution in the normal
spectrum of a black body. A comparison with equation (38) of the last lecture furnishes
us then with the universal function:

F (ν, T ) =
hν3

ehν/kT − 1
.

If we refer the specific intensity of a monochromatic ray, not to the frequency ν,
but, as is commonly done in experimental physics, to the wave length λ, then, since
between the absolute values of dν and dλ the relation exists:

|dν| = c · |dλ|
λ2

,

we obtain from
Eλ|dλ| = Kν |dν|,

the relation:

Eλ =
c2h

λ5
· 1

ech/kλT − 1
(54)

as the intensity of a monochromatic plane polarized ray of wave length λ is emitted
normally to the surface of a black body in a vacuum at temperature T . For small values
of λT (54) reduces to:

Eλ =
c2h

λ5
· e−(ch/kλT ), (55)

which expresses Wien’s Displacement Law. For large values of λT on the other hand,
there results from (54):

Eλ =
ckT

λ4
, (56)

a relation first established by Lord Rayleigh and which we may here designate as the
Rayleigh Law of Radiation.

From equation (30), taking account of (53), we obtain for the space density of black
radiation in a vacuum:

ε =
48πh

c3

(
kT

h

)4

· α = aT 4,
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wherein

α = 1 +
1

24
+

1

34
+

1

44
+ · · · = 1.0823.

The Stefan-Boltzmann law is hereby expressed. In accordance with the measurements
of Kurlbaum, we have the constant

a =
48πk4

c3h3
· α = 7.061 · 10−15 erg

cm3deg4 .

For that wave length λm which corresponds in the spectrum of black radiation to
the maximum intensity of radiation Eλ we have from equation (54):(

dEλ
dλ

)
λ=λm

= 0.

Carrying out the differentiation, we get, after putting for brevity:

ch

kλmT
= β, e−β +

β

5
− 1 = 0.

The root of this transcendental equation is:

β = 4.9651;

and λmT = ch/kβ = b is a constant (Wien’s Displacement Law). In accordance with
the measurements of O. Lummer and E. Pringsheim,

b = 0.294 cm · deg.

From this there follow the numerical values

k = 1.346 · 10−16 erg

deg
, and h = 6.548 · 10−27erg · sec.

The value found for k easily permits of the specification numerically, in the C.G.S.
system, of the general connection between entropy and probability, as expressed through
the universal equation (12). Thus, quite in general, the entropy of a physical system is:

S = 1.346 · 10−16
e

log W.

In the application to the kinetic gas theory we obtain from equation (24) for the
ratio of the molecular mass to the mol mass:

ω =
k

R
= 1.62 · 10−24,

i. e., to one mol there corresponds 1/ω = 6.175 · 1023 molecules, where it is supposed
that the mol of oxygen

O2 = 32g.

Accordingly, the number of molecules contained in 1 cu. cm. of an ideal gas at 0◦ Cels.
and at atmospheric pressure is:

N = 2.76 · 1019.
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The mean kinetic energy of the progressive motion of a molecule at the absolute tem-
perature T = 1 in the absolute C.G.S. system, in accordance with (27), is:

L = 3
2
k = 2.02 · 10−16.

In general, the mean kinetic energy of progressive motion of a molecule is expressed by
the product of this number and the absolute temperature T .

The elementary quantum of electricity, or the free electric charge of a monovalent
ion or electron, in electrostatic measure is:

e = ω · 9658 · 3 · 1010 = 4.69 · 10−10.

This result stands in noteworthy agreement with the results of the latest direct mea-
surements of the electric elementary quantum made by E. Rutherford and H. Geiger,
and E. Regener.

Even if the radiation formula (54) here derived had shown itself as valid with re-
spect to all previous tests, the theory would still require an extension as regards a
certain point; for in it the physical meaning of the universal constant h remains quite
unexplained. All previous attempts to derive a radiation formula upon the basis of the
known laws of electron theory, among which the theory of J. H. Jeans is to be considered
as the most general and exact, have led to the conclusion that h is infinitely small, so
that, therefore, the radiation formula of Rayleigh possesses general validity, but, in my
opinion, there can be no doubt that this formula loses its validity for short waves, and
that the pains which Jeans has taken to place5 the blame for the contradiction between
theory and experiment upon the latter are unwarranted.

Consequently, there remains only the one conclusion, that previous electron theories
suffer from an essential incompleteness which demands a modification, but how deeply
this modification should go into the structure of the theory is a question upon which
views are still widely divergent. J. J. Thompson inclines to the most radical view, as do
J. Larmor, A. Einstein, and with him I. Stark, who even believe that the propagation
of electromagnetic waves in a pure vacuum does not occur precisely in accordance with
the Maxwellian field equations, but in definite energy quanta hν. I am of the opinion,
on the other hand, that at present it is not necessary to proceed in so revolutionary a
manner, and that one may come successfully through by seeking the significance of the
energy quantum hν solely in the mutual actions with which the resonators influence
one another.6 A definite decision with regard to these important questions can only be
brought about as a result of further experience.

5In that the walls used in the measurements of hollow space radiations must be diathermanous for
the shortest waves.

6It is my intention to give a complete presentation of these relations in Volume 31 of the Annalen
der Physik.
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SEVENTH LECTURE.

General Dynamics. Principle of Least Action.

Since I began three weeks ago today to depict for you the present status of the
system of theoretical physics and its probable future development, I have continually
sought to bring out that in the theoretical physics of the future the most important and
the final division of all physical processes would likely be into reversible and irreversible
processes. In succeeding lectures, with the aid of the calculus of probability and with the
introduction of the hypothesis of elementary disorder, we have seen that all irreversible
processes may be considered as reversible elementary processes: in other words, that
irreversibility does not depend upon an elementary property of a physical process,
but rather depends upon the ensemble of numerous disordered elementary processes of
the same kind, each one of which individually is completely reversible, and upon the
introduction of the macroscopic method of treatment. From this standpoint one can
say quite correctly that in the final analysis all processes in nature are reversible. That
there is herein contained no contradiction to the principle regarding the irreversibility of
processes expressed in terms of the mean values of elementary processes of macroscopic
changes of state, I have demonstrated fully in the third lecture. Perhaps it will be
appropriate at this place to interject a more general statement. We are accustomed
in physics to seek the explanation of a natural process by the method of division of
the process into elements. We regard each complicated process as composed of simple
elementary processes, and seek to analyse it through thinking of the whole as the
sum of the parts. This method, however, presupposes that through this division the
character of the whole is not changed; in somewhat similar manner each measurement
of a physical process presupposes that the progress of the phenomena is not influenced
by the introduction of the measuring instrument. We have here a case in which that
supposition is not warranted, and where a direct conclusion with regard to the parts
applied to the whole leads to quite false results. If we divide an irreversible process into
its elementary constituents, the disorder and along with it the irreversibility vanishes;
an irreversible process must remain beyond the understanding of anyone who relies
upon the fundamental law: that all properties of the whole must also be recognizable
in the parts. It appears to me as though a similar difficulty presents itself in most of
the problems of intellectual life.

Now after all the irreversibility in nature thus appears in a certain sense eliminated,
it is an illuminating fact that general elementary dynamics has only to do with re-
versible processes. Therefore we shall occupy ourselves in what follows with reversible
processes exclusively. That which makes this procedure so valuable for the theory is
the circumstance that all known reversible processes, be they mechanical, electrody-
namical or thermal, may be brought together under a single principle which answers
unambiguously all questions regarding their behavior. This principle is not that of con-
servation of energy; this holds, it is true, for all these processes, but does not determine
unambiguously their behavior; it is the more comprehensive principle of least action.

The principle of least action has grown upon the ground of mechanics where it enjoys
equal rank and regard with numerous other principles; the principle of d’Alembert, the
principle of virtual displacement, Gauss’s principle of least constraint, the Lagrangian
Equations of the first and second kind. All these principles are equivalent to one another
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and therefore at bottom are only different formularizations of the same laws; sometimes
one and sometimes another is the most convenient to use. But the principle of least
action has the decided advantage over all the other principles mentioned in that it con-
nects together in a single equation the relations between quantities which possess, not
only for mechanics, but also for electrodynamics and for thermodynamics, direct signif-
icance, namely, the quantities: space, time and potential. This is the reason why one
may directly apply the principle of least action to processes other than mechanical, and
the result has shown that such applications, as well in electrodynamics as in thermody-
namics, lead to the appropriate laws holding in these subjects. Since a representation
of a unified system of theoretical physics such as we have here in mind must lay the
chief emphasis upon as general an interpretation as possible of physical laws, it is self
evident that in our treatment the principle of least action will be called upon to play
the principal rôle. I desire now to show how it is applied in simple individual cases.

The general formularization of the principle of least action in the interpretation
given to it by Helmholz is as follows: among all processes which may carry a certain
arbitrarily given physical system subject to given external actions from a given initial
position into a given final position in a given time, the process which actually takes
place in nature is that which is distinguished by the condition that the integral∫ t1

t0

(δH + A)dt = 0, (57)

wherein an arbitrary displacement of the independent coordinates (and velocities) is
denoted by the sign δ, and A denotes the infinitely small increase in energy (external
work) which the system experiences in the displacement δ. The function H is the kinetic
potential. When we speak here of the positions, the coordinates, and the velocities of
the configuration, we understand thereby, not only those special ones corresponding
to mechanical ideas, but also all the so-called generalized coordinates with the quan-
tities derived therefrom; and these may represent equally well quantities of electricity,
volumes, and the like.

In the applications which we shall now make of the principle of least action, we must
first decide as to whether the generalized coordinates which determine the state of the
system considered are present in finite number or form a continuous infinite manifold.
We shall distinguish the examples here considered in accordance with this viewpoint.

1. The Position (Configuration) is Determined by a Finite Number of
Coordinates.

In ordinary mechanics this is actually the case in every system of a finite number
of material points or rigid bodies among whose coordinates there exist arbitrary fixed
equations of condition. If we call the independent coordinates ϕ1, ϕ2, · · · , then the
external work is:

A = Φ1δϕ1 + Φ2δϕ2 + · · · = δE, (58)

wherein Φ1, Φ2, · · · are the “external force components” which correspond to the indi-
vidual coordinates, and E denotes the energy of the system. Then the principle of least
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action is expressed by:∫ t1

t0

dt ·
∑
1,2,···

(
∂H

∂ϕ1

δϕ1 +
∂H

∂ϕ̇1

δϕ̇1 + Φ1δϕ1

)
= 0.

From this follow the equations of motion:

Φ1 −
d

dt

(
∂H

∂ϕ̇1

)
+
∂H

∂ϕ1

= 0, (59)

and so on for all the indices, 1, 2, · · · . Through multiplication of the individual equations
by ϕ̇1, ϕ̇2, · · · addition and integration with respect to time, there results the equation
of conservation of energy, whereby the energy E is given by the expression:

E =
∑
1,2,···

ϕ̇1
∂H

∂ϕ̇1

−H. (60)

In ordinary mechanics H = L− U , if L denote the kinetic and U the potential energy.
Since L is a homogeneous function of the second degree with respect to the ϕ̇’s, it
follows from (60) that:

E = 2L−H = L+ U.

But this expression holds by no means in general.
We pass now to the consideration of the quasi-stationary motion of a system of linear

conductors carrying simple closed galvanic currents. The state of the system is given
by the position and the velocities of the conductors and by the current densities in each
of the same. The coordinates referring to the position of the first conductor may be
represented by ϕ1, ϕ1

′, ϕ1
′′, · · · , corresponding designations holding for the remaining

conductors. We inquire now as to the increase of energy or the external work, A, which
corresponds to a virtual displacement of all coordinates. Energy may be conveyed to
the system through mechanical actions and through electromagnetic induction as well.
The former corresponds to mechanical work, the latter to electromotive work. The
former will be of the familiar form:

Φ1δϕ1 + Φ1
′δϕ1 + · · ·+ Φ2δϕ2 + · · · .

If we denote by E1, E2, · · · the electromotive forces which are induced in the individual
conductors through external agencies (e. g., moving magnets which do not belong to
the system), then the electromotive work done from outside upon the currents in the
conductors of the system is:

E1δε1 + E2δε2 + · · · ,

if δε1, δε2, · · · denote the quantities of electricity which pass through cross sections
of the conductors due to infinitely small virtual currents. The finite current densities
will then be denoted by ε̇1, ε̇2, · · · . The electrical state of the first conductor is thus
determined in general by the current density ε̇1, the mechanical state (position and
velocity) by the coordinates ϕ1, ϕ1

′, ϕ1
′′, · · · and the corresponding velocities ϕ̇1, ϕ̇′1,

ϕ̇′′1, · · · . The coordinates ε1, ε2, · · · are so-called “cyclical” coordinates, since the state
does not depend upon their momentary values, but only upon their differential quotients
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with respect to time, just as, for example, the state of a body rotatable about an
axis of symmetry depends only upon the angular velocity, and not upon the angle
of rotation. The scheme of notation adopted permits of the direct application of the
above formularization of the principle of least action to the case here considered. Thus
H = Hφ +Hε, where Hφ, the mechanical potential, depends only upon the ϕ’s and ϕ̇’s,
while the electrokinetic potential Hε takes the following form:

Hε = 1
2
L11ε̇1

2 + L12ε̇1ε̇2 + L13ε̇1ε̇3 + · · ·+ 1
2
L22ε̇2

2 + · · · .

The quantities L11, L12, L13 · · · L22, · · · the coefficients of self induction and mutual in-
duction depend, however, in a definite manner upon the coordinates of position ϕ1, ϕ1

′,
ϕ1
′′, · · · , ϕ2, ϕ2

′, ϕ2
′′, · · · .

In accordance with (59), we have for the motion of the first conductor:

Φ1 −
d

dt

(
∂Hφ

∂ϕ̇1

)
+
∂Hφ

∂ϕ1

+
∂Hε

∂ϕ1

= 0,

with corresponding equations for ϕ1
′, ϕ1

′′, · · · , and for the electric current in it:

E1 −
d

dt

(
∂Hε

∂ε̇1

)
= 0.

The laws for the mechanical (ponderomotive) actions may be condensed into the
statement that, in addition to the ordinary force upon the first conductor expressed
by Φ1, there is a mechanical force

∂Hε

∂ϕ1

=
1

2

∂L11

∂ϕ1

ε̇1
2 +

∂L12

∂ϕ1

ε̇1ε̇2 +
∂L13

∂ϕ1

ε̇1ε̇3 + · · · ,

which is composed of an action of the current upon itself (first term) and of the actions
of the remaining currents upon it (following terms).

The laws of electrical action, on the other hand, are expressed by the statement,
that to the external electromotive force E1 in the first conductor there is added the
electromotive force

− d

dt

(
∂Hε

∂ε̇1

)
= − d

dt
(L11ε̇1 + L12ε̇2 + L13ε̇3 + · · · )

which likewise is composed of an action of the current upon itself (self induction) and
of the inducing actions of the remaining currents, and that these two forces compensate
each other.

The galvanic conductance or the galvanic resistance is not contained in these equa-
tions because the corresponding energy, Joule heat, is produced in an irreversible man-
ner, and irreversible processes are not represented by the principle of least action. One
can formally include this action, likewise any other irreversible action, in accordance
with the procedure of Helmholz, by introducing it as an external force, in the present
case as the electromotive force due to the resistance w, which operates to cause a
diminution in the energy of the system. For an infinitely small element of time, the
amount of this energy change is:

−(w1ε̇1
2 + w2ε̇2

2 + w3ε̇3
2 + · · · ) · dt = −(w1ε̇1dε1 + w2ε̇2dε2 + · · · ).
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Consequently, since the external work E1dε1 + E2dε2 + · · · now includes the Joule
heat, the external force components E1, E2, · · · in the electromotive equations must be
increased by the additional terms −w1ε̇1, −w2ε̇2, · · · .

The application of the principle of least action to thermodynamic processes is of
special interest, because the importance of the question relating to the fixing of the
generalized coordinates, which determine the state of the system, here becomes promi-
nent. From the standpoint of pure thermodynamics, the variables which determine the
state of a body can certainly be quite arbitrarily chosen, e. g., in the case of a gas of in-
variable constitution any two of the following quantities may be chosen as independent
variables and all others expressed through them: volume V , temperature T , pressure P ,
energy E, entropy S. In the present case, the matter is quite different. If we inquire,
in order to apply the principle of least action, with regard to the energy change or the
total work A which will be done upon the gas from without in an infinitely small virtual
displacement, it may be written in the form:

A = −p · δV + T · δS.

TδS is the heat added from without, −pδV the mechanical work furnished from without.
In order to bring this into agreement with the general formula for external work (58):

A = Φ1δϕ1 + Φ2δϕ2

it becomes necessary now to choose V and S as the generalized coordinates of state
and, therefore, to identify with them the previously employed quantities ϕ1 and ϕ2.
Then −p and T are the generalized force components Φ1 and Φ2. Now, since in thermo-
dynamics every reversible change of state proceeds with infinite slowness, the velocity
components V̇ and Ṡ, and in general all differential coefficients with respect to time,
are to be placed equal to zero, and the principle of least action (59) reduces to:

Φ +
∂H

∂ϕ
= 0,

and, therefore, in our case:

−p+

(
∂H

∂V

)
S

= 0 and T +

(
∂H

∂S

)
V

= 0.

Further, in accordance with (60):
E = −H.

Now these equations are actually valid, since they only present other forms of the
relation

dS =
dE + pdV

T
.

The view here presented is fundamentally that which is given in the energetics of
Mach, Ostwald, Helm, and Wiedeburg. The generalized coordinates V and S are in
this theory the “capacity factors,” −p and T the “intensity factors.”7 So long as one

7The breaking up of the energy differentials into two factors by the exponents of energetics is by
no means associated with a special property of energy, but is simply an expression for the elementary
law that the differential of a function F (x) is equal to the product of the differential dx by the
derivative Ḟ (x).
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limits himself to an irreversible process, nothing stands in the way of carrying out this
method completely, nor of a generalization to include chemical processes.

In opposition to it there is an essentially different method of regarding thermody-
namic processes, which in its complete generality was first introduced into physics by
Helmholtz. In accordance with this method, one generalized coordinate is V , and the
other is not S, but a certain cyclical coordinate—we shall denote it, as in the previous
example, by ε—which does not appear itself in the expression for the kinetic potential H
and only appears through its differential coefficient, ε̇; and this differential coefficient
is the temperature T . Accordingly, H is dependent only upon V and T . The equation
for the total external work, in accordance with (58), is:

A = −pδV + Eδε,

and agreement with thermodynamics is obviously found if we set:

Eδε = TδS, and also: Edε = TdS, Edt = dS.

The equations (59) for the principle of least action become:

−p+

(
∂H

∂V

)
T

= 0 and E − d

dt

(
∂H

∂T

)
V

= 0,

or

d

(
∂H

∂T

)
V

= Edt = dS,

or by integration: (
∂H

∂T

)
V

= S,

to an additive constant, which we may set equal to 0. For the energy there results, in
accordance with (60):

E = ε̇
∂H

∂ε̇
−H = T

(
∂H

∂T

)
V

−H,

and consequently:
H = −(E − TS).

H is therefore equal to the negative of the function which Helmholz has called the “free
energy” of the system, and the above equations are known from thermodynamics.

Furthermore, the method of Helmholz permits of being carried through consistently,
and so long as one limits himself to the consideration of reversible processes, it is in
general quite impossible to decide in favor of the one method or the other. However,
the method of Helmholz possesses a distinct advantage over the other which I desire
to emphasize here. It lends itself better to the furtherance of our endeavor toward the
unification of the system of physics. In accordance with the purely energetic method,
the independent variables V and S have absolutely nothing to do with each other; heat
is a form of energy which is distinguished in nature from mechanical energy and which in
no way can be referred back to it. In accordance with Helmholz, heat energy is reduced
to motion, and this certainly indicates an advance which is to be placed, perhaps, upon
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exactly the same footing as the advance which is involved in the consideration of light
waves as electromagnetic waves.

To be sure, the view of Helmholz is not broad enough to include irreversible pro-
cesses; with regard to this, as we have earlier stated in detail, the introduction of the
calculus of probability is necessary in order to throw light on the question. At the same
time, this is also the real reason that the exponents of energetics will have nothing to
do with the strict observance of irreversible processes, and they either declare them as
doubtful or ignore them completely. In reality, the facts of the case are quite the reverse;
irreversible processes are the only processes occurring in nature. Reversible processes
form only an ideal abstraction, which is very valuable for the theory, but which is never
completely realized in nature.

II. The Generalized Coordinates of State Form a Continuous Manifold.

The laws of infinitely small motions of perfectly elastic bodies furnish us with the
simplest example. The coordinates of state are then the displacement components,
vx, vy, vz, of a material point from its position of equilibrium (x, y, z), considered as a
function of the coordinates x, y, z. The external work is given by a surface integral:

A =

∫
dσ(Xνδvx + Yνδvy + Zνδvz)

(dσ, surface element; ν, inner normal). The kinetic potential is again given by the
difference of the kinetic energy L and the potential energy U :

H = L− U.

The kinetic energy is:

L =

∫
dτk

2
(v̇2
x + v̇2

y + v̇2
z),

wherein dτ denotes a volume element, k the volume density. The potential energy U
is likewise a space integral of a homogeneous quadratic function f which specifies the
potential energy of a volume element. This depends, as is seen from purely geometrical
considerations, only upon the 6 “strain coefficients:”

∂vx
∂x

= xx,
∂vy
∂y

= yy,
∂vz
∂z

= zz,

∂vy
∂z

+
∂vz
∂y

= yz = zy,
∂vz
∂x

+
∂vx
∂z

= zx = xz,
∂vx
∂y

+
∂vy
∂x

= xy = yx.

In general, therefore, the function f contains 21 independent constants, which char-
acterize the whole elastic behavior of the substance. For isotropic substances these
reduce on grounds of symmetry to 2. Substituting these values in the expression for
the principle of least action (57) we obtain:∫

dt

{∫
dτk(v̇xδv̇x + · · · )−

∫
dτ

(
∂f

∂xx
δxx +

∂f

∂xy
δxy + · · ·

)
+

∫
dσ(Xνδvx + · · · )

}
= 0.
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If we put for brevity:

− ∂f

∂xx
= Xx, − ∂f

∂yy
= Yy, − ∂f

∂zz
= Zz,

− ∂f
∂yz

= Yz = Zy, − ∂f
∂zx

= Zx = Xz, − ∂f

∂xy
= Xy = Yx,

it turns out, as the result of purely mathematical operations in which the variations
δv̇x, δv̇y, · · · and likewise the variations δxx, δxy, · · · are reduced through suitable
partial integration with respect to the variations δvx, δvy, · · · , that the conditions
within the body are expressed by:

kv̈x +
∂Xx

∂x
+
∂Xy

∂y
+
∂Xz

∂z
= 0, · · ·

and at the surface, by:

Xν = Xx cos νx+Xy cos νy +Xz cos νz, · · ·

as is known from the theory of elasticity. The mechanical significance of the quantities
Xx, Yy, · · · as surface forces follows from the surface conditions.

For the last application of the principle of least action we will take a special case
of electrodynamics, namely, electrodynamic processes in a homogeneous isotropic non-
conductor at rest, e. g., a vacuum. The treatment is analogous to that carried out in
the foregoing example. The only difference lies in the fact that in electrodynamics the
dependence of the potential energy U upon the generalized coordinate v is somewhat
different than in elastic phenomena.

We therefore again put for the external work:

A =

∫
dσ(Xνδvx + Yνδvy + Zνδvz), (61)

and for the kinetic potential:
H = L− U,

wherein again:

L =

∫
dτ
k

2
(v̇x

2 + v̇y
2 + v̇z

2) =

∫
dτ
k

2
(v̇)2.

On the other hand, we write here:

U =

∫
dτ
h

2
(curl v)2.

Through these assumptions the dynamical equations including the boundary conditions
are now completely determined. The principle of least action (57) furnishes:∫

dt{
∫
dτk(v̇xδv̇x + · · · )−

∫
dτh(curlx vδ curlx v + · · · )

+
∫
dσ(Xνδvx + · · · )} = 0.
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From this follow, in quite an analogous way to that employed above in the theory of
elasticity, first, for the interior of the non-conductor:

kv̈x = h

(
∂ curly v

∂z
− ∂ curlz v

∂y

)
, · · ·

or more briefly
kv̈ = −h curl curl v, (62)

and secondly, for the surface:

Xν = h(curlz v · cos νy − curly v · cos νz), · · · (63)

These equations are identical with the known electrodynamical equations, if we identify
L with the electric, and U with the magnetic energy (or conversely). If we put

L =
1

8π

∫
dτ · εE2 and U =

1

8π

∫
dτ · µH2,

(E and H, the field strengths, ε, the dielectric constant, µ, the permeability) and compare
these values with the above expressions for L and U we may write:

v̇ = −E ·
√

ε

4πk
, curl v = H

√
µ

4πh
. (64)

It follows then, by elimination of v, that:

Ḣ = −

√
εh

µk
· curlE,

and further, by substitution of v̇ and curl v in equation (62) found above for the interior
of the non-conductor, that:

Ė =

√
µh

εk
curlH.

Comparison with the known electrodynamical equations expressed in Gaussian units:

µḢ = −c curlE, εĖ = c curlH

(c, velocity of light in vacuum) results in a complete agreement, if we put:

c

µ
=

√
εh

µk
and

c

ε
=

√
µh

εk
.

From either of these two equations it follows that:

h

k
=
c2

εµ
,

the square of the velocity of propagation.
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We obtain from (61) for the energy entering the system from without:

dt ·
∫
dσ(Xν v̇x + Yν v̇y + Zν v̇z),

or, taking account of the surface equation (63):

dt ·
∫
dσh{(curlz v cos νy − curly v cos νz)v̇x + · · · },

an expression which, upon substitution of the values of v̇ and curl v from (64), turns
out to be identical with the Poynting energy current.

We have thus by an application of the principle of least action with a suitably chosen
expression for the kinetic potential H arrived at the known Maxwellian field equations.

Are, then, the electromagnetic processes thus referred back to mechanical processes?
By no means; for the vector v employed here is certainly not a mechanical quantity. It
is moreover not possible in general to interpret v as a mechanical quantity, for instance,
v as a displacement, v̇ as a velocity, curl v as a rotation. Thus, e. g., in an electrostatic
field v̇ is constant. Therefore, v increases with the time beyond all limits, and curl v can
no longer signify a rotation.8 While from these considerations the possibility of a
mechanical explanation of electrical phenomena is not proven, it does appear, on the
other hand, to be undoubtedly true that the significance of the principle of least action
may be essentially extended beyond ordinary mechanics and that this principle can
therefore also be utilized as the foundation for general dynamics, since it governs all
known reversible processes.

8With regard to the impossibility of interpreting electrodynamic processes in terms of the motions
of a continuous medium, cf. particularly, H. Witte: “Über den gegenwärtigen Stand der Frage nach
einer mechanischen Erklärung der elektrischen Erscheinungen” Berlin, 1906 (E. Ebering).
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EIGHTH LECTURE.

General Dynamics. Principle of Relativity.

In the lecture of yesterday we saw, by means of examples, that all continuous re-
versible processes of nature may be represented as consequences of the principle of least
action, and that the whole course of such a process is uniquely determined as soon
as we know, besides the actions which are exerted upon the system from without, the
kinetic potential H as a function of the generalized coordinates and their differential
coefficients with respect to time. The determination of this function remains then as a
special problem, and we recognize here a rich field for further theories and hypotheses.
It is my purpose to discuss with you today an hypothesis which represents a magnificent
attempt to establish quite generally the dependency of the kinetic potential H upon
the velocities, and which is commonly designated as the principle of relativity. The gist
of this principle is: it is in no wise possible to detect the motion of a body relative to
empty space; in fact, there is absolutely no physical sense in speaking of such a motion.
If, therefore, two observers move with uniform but different velocities, then each of the
two with exactly the same right may assert that with respect to empty space he is at
rest, and there are no physical methods of measurement enabling us to decide in favor
of the one or the other. The principle of relativity in its generalized form is a very recent
development. The preparatory steps were taken by H. A. Lorentz, it was first generally
formulated by A. Einstein, and was developed into a finished mathematical system by
H. Minkowski. However, traces of it extend quite far back into the past, and therefore
it seems desirable first to say something concerning the history of its development.

The principle of relativity has been recognized in mechanics since the time of Galilee
and Newton. It is contained in the form of the simple equations of motion of a material
point, since these contain only the acceleration and not the velocity of the point. If,
therefore, we refer the motion of the point, first to the coordinates x, y, z, and again
to the coordinates x′, y′, z′ of a second system, whose axes are directed parallel to the
first and which moves with the velocity ν in the direction of the positive x-axis:

x′ = x− νt, y′ = y, z′ = z, (65)

and the form of the equations of motion is not changed in the slightest. Nothing short
of the assumption of the general validity of the relativity principle in mechanics can
justify the inclusion by physics of the Copernican cosmical system, since through it the
independence of all processes upon the earth of the progressive motion of the earth is
secured. If one were obliged to take account of this motion, I should have, e. g., to admit
that the piece of chalk in my hand possesses an enormous kinetic energy, corresponding
to a velocity of something like 30 kilometers per second.

It was without doubt his conviction of the absolute validity of the principle of rel-
ativity which guided Heinrich Hertz in the establishment of his fundamental equations
for the electrodynamics of moving bodies. The electrodynamics of Hertz is, in fact,
wholly built upon the principle of relativity. It recognizes no absolute motion with
regard to empty space. It speaks only of motions of material bodies relative to one
another. In accordance with the theory of Hertz, all electrodynamic processes occur
in material bodies; if these move, then the electrodynamic processes occurring therein
move with them. To speak of an independent state of motion of a medium outside of
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material bodies, such as the ether, has just as little sense in the theory of Hertz as in
the modern theory of relativity.

But the theory of Hertz has led to various contradictions with experience. I will refer
here to the most important of these. Fizeau brought (1851) into parallelism a bundle
of rays originating in a light source L by means of a lens and then brought it to a focus
by means of a second lens upon a screen S (Fig. 2). In the path of the parallel light
rays between the two lenses he placed a tube system of such sort that a transparent
liquid could be passed through it, and in such manner that in one half (the upper) the
light rays would pass in the direction of flow of the liquid while in the other half (the
lower), the rays would pass in the opposite direction.

If now a liquid or a gas flow through the tube system with the velocity ν, then, in
accordance with the theory of Hertz, since light must be a process in the substance,
the light waves must be transported with the velocity of the liquid. The velocity of
light relative to L and S is, therefore, in the upper part q0 + ν, and the lower part
q0 − ν, if q0 denote the velocity of light relative to the liquid. The difference of these
two velocities, 2ν, should be observable at S through corresponding interference of the
lower and the upper light rays, and quite independently of the nature of the flowing
substance. Experiment did not confirm this conclusion. Moreover, it showed in gases
generally no trace of the expected action; i. e., light is propagated in a flowing gas in the
same manner as in a gas at rest. On the other hand, in the case of liquids an effect was
certainly indicated, but notably smaller in amount than that demanded by the theory
of Hertz. Instead of the expected velocity difference 2ν, the difference 2ν(1 − 1/n2)
only was observed, where n is the refractive index of the liquid. The factor (1− 1/n2)
is called the Fresnel coefficient. There is contained (for n = 1) in this expression the
result obtained in the case of gases.

It follows from the experiment of Fizeau that, as regards electrodynamic processes
in a gas, the motion of the gas is practically immaterial. If, therefore, one holds that
electrodynamic processes require for their propagation a substantial carrier, a special
medium, then it must be concluded that this medium, the ether, remains at rest when
the gas moves in an arbitrary manner. This interpretation forms the basis of the elec-
trodynamics of Lorentz, involving an absolutely quiescent ether. In accordance with
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this theory, electrodynamic phenomena have only indirectly to do with the motion of
matter. Primarily all electrodynamical actions are propagated in ether at rest. Matter
influences the propagation only in a secondary way, so far as it is the cause of exciting
in greater or less degree resonant vibrations in its smallest parts by means of the elec-
trodynamic waves passing through it. Now, since the refractive properties of substances
are also influenced through the resonant vibrations of its smallest particles, there results
from this theory a definite connection between the refractive index and the coefficient
of Fresnel, and this connection is, as calculation shows, exactly that demanded by mea-
surements. So far, therefore, the theory of Lorentz is confirmed through experience,
and the principle of relativity is divested of its general significance.

The principle of relativity was immediately confronted by a new difficulty. The
theory of a quiescent ether admits the idea of an absolute velocity of a body, namely
the velocity relative to the ether. Therefore, in accordance with this theory, of two
observers A and B who are in empty space and who move relatively to each other with
the uniform velocity ν, it would be at best possible for only one rightly to assert that
he is at rest relative to the ether. If we assume, e. g., that at the moment at which the
two observers meet an instantaneous optical signal, a flash, is made by each, then an
infinitely thin spherical wave spreads out from the place of its origin in all directions
through empty space. If, therefore, the observer A remain at the center of the sphere,
the observer B will not remain at the center and, as judged by the observer B, the light
in his own direction of motion must travel (with the velocity c − ν) more slowly than
in the opposite direction (with the velocity c+ ν), or than in a perpendicular direction
(with the velocity

√
c2 − ν2) (cf. Fig. 3). Under suitable conditions the observer B

should be able to detect and measure this sort of effect.

This elementary consideration led to the celebrated attempt of Michelson to measure
the motion of the earth relative to the ether. A parallel beam of rays proceeding from L
(Fig. 4) falls upon a transparent plane parallel plate P inclined at 45◦, by which it is
in part transmitted and in part reflected. The transmitted and reflected beams are
brought into interference by reflection from suitable metallic mirrors S1 and S2, which
are removed by the same distance l from P . If, now, the earth with the whole apparatus

81



moves in the direction PS1 with the velocity ν, then the time which the light needs in
order to go from P to S1 and back is:

l

c− ν
+

l

c+ ν
=

2l

c

(
1 +

ν2

c2
+ · · ·

)
.

On the other hand, the time which the light needs in order to pass from P to S2 and
back to P is:

l√
c2 − ν2

+
l√

c2 − ν2
=

2l

c

(
1 +

1

2

ν2

c2
+ · · ·

)
.

If, now, the whole apparatus be turned through a right angle, a noticeable displacement
of the interference bands should result, since the time for the passage over the path PS2

is now longer. No trace was observed of the marked effect to be expected.

Now, how will it be possible to bring into line this result, established by repeated
tests with all the facilities of modern experimental art? E. Cohn has attempted to
find the necessary compensation in a certain influence of the air in which the rays are
propagated. But for anyone who bears in mind the great results of the atomic theory of
dispersion and who does not renounce the simple explanation which this theory gives
for the dependence of the refractive index upon the color, without introducing some-
thing else in its place, the idea that a moving absolutely transparent medium, whose
refractive index is absolutely = 1, shall yet have a notable influence upon the velocity
of propagation of light, as the theory of Cohn demands, is not possible of assumption.
For this theory distinguishes essentially a transparent medium, whose refractive index
is = 1, from a perfect vacuum. For the former the velocity of propagation of light in
the direction of the velocity ν of the medium with relation to an observer at rest is

q = c+
ν2

c
,
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for a vacuum, on the other hand, q = c. In the former medium, Cohn’s theory of
the Michelson experiment predicts no effect, but, on the other hand, the Michelson
experiment should give a positive effect in a vacuum.

In opposition to E. Cohn, H. A. Lorentz and FitzGerald ascribe the necessary com-
pensation to a contraction of the whole optical apparatus in the direction of the earth’s
motion of the order of magnitude ν2/c2. This assumption allows better of the introduc-
tion again of the principle of relativity, but it can first completely satisfy this principle
when it appears, not as a necessary hypothesis made to fit the present special case,
but as a consequence of a much more general postulate. We have to thank A. Ein-
stein for the framing of this postulate and H. Minkowski for its further mathematical
development.

Above all, the general principle of relativity demands the renunciation of the as-
sumption which led H. A. Lorentz to the framing of his theory of a quiescent ether; the
assumption of a substantial carrier of electromagnetic waves. For, when such a carrier
is present, one must assume a definite velocity of a ponderable body as definable with
respect to it, and this is exactly that which is excluded by the relativity principle. Thus
the ether drops out of the theory and with it the possibility of mechanical explanation
of electrodynamic processes, i. e., of referring them to motions. The latter difficulty,
however, does not signify here so much, since it was already known before, that no
mechanical theory founded upon the continuous motions of the ether permits of be-
ing completely carried through (cf. p. 78). In place of the so-called free ether there is
now substituted the absolute vacuum, in which electromagnetic energy is independently
propagated, like ponderable atoms. I believe it follows as a consequence that no physical
properties can be consistently ascribed to the absolute vacuum. The dielectric constant
and the magnetic permeability of a vacuum have no absolute meaning, only relative. If
an electrodynamic process were to occur in a ponderable medium as in a vacuum, then
it would have absolutely no sense to distinguish between field strength and induction.
In fact, one can ascribe to the vacuum any arbitrary value of the dielectric constant,
as is indicated by the various systems of units. But how is it now with regard to the
velocity of propagation of light? This also is not to be regarded as a property of the
vacuum, but as a property of electromagnetic energy which is present in the vacuum.
Where there is no energy there can exist no velocity of propagation.

With the complete elimination of the ether, the opportunity is now present for the
framing of the principle of relativity. Obviously, we must, as a simple consideration
shows, introduce something radically new. In order that the moving observer B men-
tioned above (Fig. 3, p. 81) shall not see the light signal given by him travelling more
slowly in his own direction of motion (with the velocity c − ν) than in the opposite
direction (with the velocity c+ ν), it is necessary that he shall not identify the instant
of time at which the light has covered the distance c − ν in the direction of his own
motion with the instant of time at which the light has covered the distance c+ ν in the
opposite direction, but that he regard the latter instant of time as later. In other words:
the observer B measures time differently from the observer A. This is a priori quite
permissible; for the relativity principle only demands that neither of the two observers
shall come into contradiction with himself. However, the possibility is left open that
the specifications of time of both observers may be mutually contradictory.

It need scarcely be emphasized that this new conception of the idea of time makes
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the most serious demands upon the capacity of abstraction and the projective power of
the physicist. It surpasses in boldness everything previously suggested in speculative
natural phenomena and even in the philosophical theories of knowledge: non-euclidean
geometry is child’s play in comparison. And, moreover, the principle of relativity, unlike
non-euclidean geometry, which only comes seriously into consideration in pure mathe-
matics, undoubtedly possesses a real physical significance. The revolution introduced
by this principle into the physical conceptions of the world is only to be compared in
extent and depth with that brought about by the introduction of the Copernican system
of the universe.

Since it is difficult, on account of our habitual notions concerning the idea of absolute
time, to protect ourselves, without special carefully considered rules, against logical
mistakes in the necessary processes of thought, we shall adopt the mathematical method
of treatment. Let us consider then an electrodynamic process in a pure vacuum; first,
from the standpoint of an observer A; secondly, from the standpoint of an observer B,
who moves relatively to observer A with a velocity ν in the direction of the x-axis.
Then, if A employ the system of reference x, y, z, t, and B the system of reference
x′, y′, z′, t′, our first problem is to find the relations among the primed and the unprimed
quantities. Above all, it is to be noticed that since both systems of reference, the primed
and the unprimed, are to be like directed, the equations of transformation between
corresponding quantities in the two systems must be so established that it is possible
through a transformation of exactly the same kind to pass from the first system to the
second, and conversely, from the second back to the first system. It follows immediately
from this that the velocity of light c′ in a vacuum for the observer B is exactly the same
as for the observer A. Thus, if c′ and c are different, c′ > c, say, it would follow that:
if one passes from one observer A to another observer B who moves with respect to A
with uniform velocity, then he would find the velocity of propagation of light for B
greater than for A. This conclusion must likewise hold quite in general independently
of the direction in which B moves with respect to A, because all directions in space are
equivalent for the observer A. On the same grounds, in passing from B to A, c must
be greater than c′, for all directions in space for the observer B are now equivalent.
Since the two inequalities contradict, therefore c′ must be equal to c. Of course this
important result may be generalized immediately, so that the totality of the quantities
independent of the motion, such as the velocity of light in a vacuum, the constant of
gravitation between two bodies at rest, every isolated electric charge, and the entropy
of any physical system possess the same values for both observers. On the other hand,
this law does not hold for quantities such as energy, volume, temperature, etc. For these
quantities depend also upon the velocity, and a body which is at rest for A is for B a
moving body.

We inquire now with regard to the form of the equations of transformation between
the unprimed and the primed coordinates. For this purpose let us consider, returning
to the previous example, the propagation, as it appears to the two observers A and B,
of an instantaneous signal creating an infinitely thin light wave which, at the instant at
which the observers meet, begins to spread out from the common origin of coordinates.
For the observer A the wave travels out as a spherical wave:

x2 + y2 + z2 − c2t2 = 0. (66)

For the second observer B the same wave also travels as a spherical wave with the same
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velocity:
x′2 + y′2 + z′2 − c2t′2 = 0; (67)

for the first observer has no advantage over the second observer. B can exactly with the
same right as A assert that he is at rest at the center of the spherical wave, and for B,
after unit time, the wave appears as in Fig. 5, while its appearance for the observer A
after unit time, is represented by Fig. 3 (p. 81).9

The equations of transformation must therefore fulfill the condition that the two
last equations, which represent the same physical process, are compatible with each
other; and furthermore: the passage from the unprimed to the primed quantities must
in no wise be distinguished from the reverse passage from the primed to the unprimed
quantities. In order to satisfy these conditions, we generalize the equations of transfor-
mation (65), set up at the beginning of this lecture for the old mechanical principle of
relativity, in the following manner:

x′ = κ(x− νt), y′ = λy, z′ = µz, t′ = νt+ ρx.

Here ν denotes, as formerly, the velocity of the observer B relative to A and the con-
stants κ, λ, µ, ν, ρ are yet to be determined. We must have:

x = κ′(x′ − ν ′t′), y = λ′y′, z = µ′z′, t = ν ′t′ + ρ′x′.

It is now easy to see that λ and λ′ must both = 1. For, if, e. g., λ be greater than 1, then
λ′ must also be greater than 1; for the two transformations are equivalent with regard
to the y axis. In particular, it is impossible that λ and λ′ depend upon the direction
of motion of the other observer. But now, since, in accordance with what precedes,
λ = 1/λ′, each of the two inequalities contradict and therefore λ = λ′ = 1; likewise,
µ = µ′ = 1. The condition for identity of the two spherical waves then demands that
the expression (66):

x2 + y2 + z2 − c2t2

9The circumstance that the signal is a finite one, however small the time may be, has significance
only as regards the thickness of the spherical layer and not for the conclusions here under consideration.
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become, through the transformation of coordinates, identical with the expression (67):

x′2 + y′2 + z′2 − c2t′2,

and from this the equations of transformation follow without ambiguity:

x′ = κ(x− νt), y′ = y, z′ = z, t′ = κ
(
t− ν

c2
x
)
, (68)

wherein
κ =

c√
c2 − ν2

.

Conversely:

x = κ(x′ + νt′), y = y′, z = z′, t = κ
(
t′ +

ν

c2
x′
)
. (69)

These equations permit quite in general of the passage from the system of reference
of one observer to that of the other (H. A. Lorentz), and the principle of relativity asserts
that all processes in nature occur in accordance with the same laws and with the same
constants for both observers (A. Einstein). Mathematically considered, the equations
of transformation correspond to a rotation in the four dimensional system of reference
(x, y, z, ict) through the imaginary angle arctg(i(ν/c)) (H. Minkowski). Accordingly,
the principle of relativity simply teaches that there is in the four dimensional system
of space and time no special characteristic direction, and any doubts concerning the
general validity of the principle are of exactly the same kind as those concerning the
existence of the antipodians upon the other side of the earth.

We will first make some applications of the principle of relativity to processes which
we have already treated above. That the result of the Michelson experiment is in agree-
ment with the principle of relativity, is immediately evident; for, in accordance with
the relativity principle, the influence of a uniform motion of the earth upon processes
on the earth can under no conditions be detected.

We consider now the Fizeau experiment with the flowing liquid (see p. 80). If the
velocity of propagation of light in the liquid at rest be again q0, then, in accordance with
the relativity principle, q0 is also the velocity of the propagation of light in the flowing
liquid for an observer who moves with the liquid, in case we disregard the dispersion of
the liquid; for the color of the light is different for the moving observer. If we call this
observer B and the velocity of the liquid as above, ν, we may employ immediately the
above formulae in the calculation of the velocity of propagation of light in the flowing
liquid, judged by an observer A at the screen S. We have only to put

dx′

dt′
= x′ = q0,

to seek the corresponding value of
dx

dt
= ẋ.

For this obviously gives the velocity sought.
Now it follows directly from the equations of transformation (69) that:

dx

dt
= ẋ =

ẋ′ + ν

1 +
νẋ′

c2

,
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and, therefore, through appropriate substitution, the velocity sought in the upper tube,
after neglecting higher powers in ν/c and ν/q0, is:

ẋ =
q0 + ν

1 +
νq0

c2

= q0 + ν

(
1− q2

0

c2

)
,

and the corresponding velocity in the lower tube is:

q0 − ν
(

1− q2
0

c2

)
.

The difference of the two velocities is

2ν

(
1− q2

0

c2

)
= 2ν

(
1− 1

n2

)
,

which is the Fresnel coefficient, in agreement with the measurements of Fizeau.
The significance of the principle of relativity extends, not only to optical and other

electrodynamic phenomena, but also to all processes of ordinary mechanics; but the
familiar expression (1

2
mq2) for the kinetic energy of a mass point moving with the

velocity q is incompatible with this principle.
But, on the other hand, since all mechanics as well as the rest of physics is governed

by the principle of least action, the significance of the relativity principle extends at
bottom only to the particular form which it prescribes for the kinetic potential H, and
this form, though I will not stop to prove it, is characterized by the simple law that the
expression

H · dt

for every space element of a physical system is an invariant

= H ′ · dt′

with respect to the passage from one observer A to the other observer B or, what is the
same thing, the expression H/

√
c2 − q2 is in this passage an invariant = H ′/

√
c2 − q′2.

Let us now make some applications of this very general law, first to the dynamics
of a single mass point in a vacuum, whose state is determined by its velocity q. Let us
call the kinetic potential of the mass point for q = 0, H0, and consider now the point
at an instant when its velocity is q. For an observer B who moves with the velocity q
with respect to the observer A, q′ = 0 at this instant, and therefore H ′ = H0. But now
since in general:

H√
c2 − q2

=
H ′√
c2 − q′2

,

we have after substitution:

H =

√
1− q2

c2
·H0 =

√
1− ẋ2 + ẏ2 + ż2

c2
·H0.

With this value of H, the Lagrangian equations of motion (59) of the previous lecture
are applicable.
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In accordance with (60), the kinetic energy of the mass point amounts to:

E = ẋ
∂H

∂ẋ
+ ẏ

∂H

∂ẏ
+ ż

∂H

∂ż
−H = q

∂H

∂q
−H = − H0√

1− q2

c2

,

and the momentum to:

G =
∂H

∂q
= − qH0

c
√
c2 − q2

.

G/q is called the transverse mass mt, and dG/dq the longitudinal mass ml of the point;
accordingly:

mt = − H0

c
√
c2 − q2

, ml = − cH0

(c2 − q2)3/2
.

For q = 0, we have

mt = ml = m0 = −H0

c2
.

It is apparent, if one replaces in the above expressions the constant H0 by the con-
stant m0, that the momentum is:

G =
m0q√
1− q2

c2

and the transverse mass:
mt =

m0√
1− q2

c2

,

and the longitudinal mass:

ml =
m0(

1− q2

c2

)3/2
,

and, finally, that the kinetic energy is:

E =
m0c

2√
1− q2

c2

= m0c
2 + 1

2
m0q

2 + · · · .

The familiar value of ordinary mechanics 1
2
m0q

2 appears here therefore only as an
approximate value. These equations have been experimentally tested and confirmed
through the measurements of A. H. Bucherer and of E. Hupka upon the magnetic
deflection of electrons.

A further example of the invariance of H ·dt will be taken from electrodynamics. Let
us consider in any given medium any electromagnetic field. For any volume element V
of the medium, the law holds that V · dt is invariant in the passage from the one to the
other observer. It follows from this that H/V is invariant; i. e., the kinetic potential of
a unit volume or the “space density of kinetic potential” is invariant.
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Hence the following relation exists;

ED− HB = E′D′ − H′B′,

wherein E and H denote the field strengths and D and B the corresponding inductions.
Obviously a corresponding law for the space energy density ED + HB will not hold.

A third example is selected from thermodynamics. If we take the velocity q of a
moving body, the volume V and the temperature T as independent variables, then, as
I have shown in the previous lecture (p. 74), we shall have for the pressure p and the
entropy S the following relations:

∂H

∂V
= p and

∂H

∂T
= S.

Now since V/
√
c2 − q2 is invariant, and S likewise invariant (see p. 84), it follows from

the invariance of H/
√
c2 − q2 that p is invariant and also that T/

√
c2 − q2 is invariant,

and hence that:

p = p′ and
T√
c2 − q2

=
T ′√
c2 − q′2

.

The two observers A and B would estimate the pressure of a body as the same, but
the temperature of the body as different.

A special case of this example is supplied when the body considered furnishes a
black body radiation. The black body radiation is the only physical system whose
dynamics (for quasi-stationary processes) is known with absolute accuracy. That the
black body radiation possesses inertia was first pointed out by F. Hasenöhrl. For black
body radiation at rest the energy E0 = aT 4V is given by the Stefan-Boltzmann law, and
the entropy S0 =

∫
(dE0/T ) = 4

3
aT 3V , and the pressure p0 = (a/3)T 4, and, therefore,

in accordance with the above relations, the kinetic potential is:

H0 =
a

3
T 4V.

Let us imagine now a black body radiation moving with the velocity q with respect to
the observer A and introduce an observer B who is at rest (q = 0) with reference to the
black body radiation; then:

H√
c2 − q2

=
H ′√
c2 − q′2

=
H ′0
c
,

wherein
H ′0 =

a

3
T ′4V ′.

Taking account of the above general relations between T ′ and T , V ′ and V , this gives
for the moving black body radiation the kinetic potential:

H =
a

3

T 4V(
1− q2

c2

)2 ,
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from which all the remaining thermodynamic quantities: the pressure p, the energy E,
the momentum G, the longitudinal and transverse masses ml and mt of the moving
black body radiation are uniquely determined.

Colleagues, ladies and gentlemen, I have arrived at the conclusion of my lectures.
I have endeavored to bring before you in bold outline those characteristic advances in
the present system of physics which in my opinion are the most important. Another in
my place would perhaps have made another and better choice and, at another time, it
is quite likely that I myself should have done so. The principle of relativity holds, not
only for processes in physics, but also for the physicist himself, in that a fixed system
of physics exists in reality only for a given physicist and for a given time. But, as in
the theory of relativity, there exist invariants in the system of physics: ideas and laws
which retain their meaning for all investigators and for all times, and to discover these
invariants is always the real endeavor of physical research. We shall work further in this
direction in order to leave behind for our successors where possible—lasting results. For
if, while engaged in body and mind in patient and often modest individual endeavor,
one thought strengthens and supports us, it is this, that we in physics work, not for the
day only and for immediate results, but, so to speak, for eternity.

I thank you heartily for the encouragement which you have given me. I thank you
no less for the patience with which you have followed my lectures to the end, and I
trust that it may be possible for many among you to furnish in the direction indicated
much valuable service to our beloved science.
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′ was printed as Φ1
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)
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∂Hε
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